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PREFACE

In the seismic analysis of a structure founded on rock, the motion experienced
by the base is essentially identical to that occurring in the same point before
the structure is built. The calculation can thus be restricted to the structure
excited by this specified motion. In the case of a soft site, two important modi-
fications arise for the same incident seismic waves from the source. First, the
free-field motion at the site in the absence of the structure is strongly affected.
Second, the presence of the structure in the soil will change the dynamic system
from the fixed-base condition. The structure will interact with the surrounding
soil, leading to a further change of the seismic motion at the base. This text on
soil-structure interaction deals with both the free-field response and the actual
interaction analysis. Soil-structure interaction is also important for other load-
ing cases (e.g., arising from unbalanced mass in rotating machinery).

The effect of soil-structure interaction is recognized to be important and
cannot, in general, be neglected. Even the seismic-design provisions applicable
to everyday building structures permit a significant reduction of the equivalent
static lateral load compared to that applicable for the fixed-base structure. For
the design of critical facilities, especially nuclear-power plants, very complex
analyses are required which are based on recent research results, some of
which have not been fully evaluated. This has led to a situation where the
analysis of soil-structure interaction has become a highly controversial matter.

A uniform approach to analyze both the free-field response as well as the
actual interaction analysis is presented in this text. This rigorous procedure,
based on wave propagation, makes use of such familiar concepts as the direct-
stiffness method of structural analysis and also applies such recent develop-

xiii



xiv Preface

ments as the boundary-element method. The results of vast parametric studies
are included, which can be used directly by the analyst. Examples from actual
practice demonstrate that these methods are being applied. Besides the rigorous
procedure, simple approximate methods are developed which nevertheless
capture the essential features of soil-structure interaction. This allows the analyst
to perform preliminary calculations with simplified models to determine the
key parameters before starting with complicated computations.

Many aspects of this field are so well established that it is difficult to
assign credit for them. Credit references have thus been restricted to those
necessary for copyright reasons. Sincere apologies are offered to anybody who
might feel offended by being left out. The author has been influenced over the
years by the research published by many authorities; to name just a few (in
alphabetical order): Professors E. Kausel, J. E. Luco, J. Lysmer, J. M. Roesset,
and A. S. Veletsos.

At the end of each chapter a summary is included. Then problems are
formulated which not only allow the student to corroborate full understanding
of the analytical techniques, but which lead to new insights into the various
aspects. The problems thus form an important part of the text. The reader who
has no intention of solving the problems in detail will find it advantageous to
glance through them. As a rule, a detailed solution procedure is provided and
the results, in many cases quite important on their own merit, are presented in
the form of figures.

The course on which this text is based has been taught for the past few
years at the Swiss Federal Institute of Technology in Zurich. It is offered for
advanced undergraduate and graduate students in civil engineering. As a pre-
requisite some knowledge of structural dynamics is essential which can be
acquired in a one-term course.

The important contributions of the author’s colleagues and students are
gratefully acknowledged. In particular, the author would sincerely like to thank
Messrs. G. von Arx, K. Bucher, G. Darbre, P. Obernhuber, P. Skrikerud,
D. Somaini, and B. Weber for their dedicated efforts. Finally, the author is
indebted to Electrowatt Engineering Services Ltd. for its financial support.

John P. Wolf



INTRODUCTION

1.1 OBJECTIVE OF SOIL-STRUCTURE INTERACTION ANALYSIS

Structural dynamics deals with methods to determine the stresses and displace-
ments of a structure subjected to dynamic loads. The dimensions of the structure
are finite. It is thus rather straightforward to determine a dynamic model with
a finite number of degrees of freedom. The corresponding dynamic equations
of motion of the discretized structure are then formulated, and highly developed
methods for solving them are readily available. In general, however, the structure
will interact with the surrounding soil. It is thus not permissible to analyze only
the structure. It must also be considered that in many important cases (e.g.,
earthquake excitation) the loading is applied to the soil region around the
structure; this means that the former has to be modeled anyway. The soil is a
semi-infinite medium, an unbounded domain. For static loading, a fictitious
boundary at a sufficient distance from the structure, where the response is
expected to have died out from a practical point of view, can be introduced. This
leads to a finite domain for the soil which can be modeled similarly to the
structure. The total discretized system, consisting of the structure and the soil,
can then be analyzed straightforwardly. However, for dynamic loading, this
procedure cannot be used. The fictitious boundary would reflect waves origi-
nating from the vibrating structure back into the discretized soil region instead
of letting them pass through and propagate toward infinity. This need to model
the unbounded foundation medium properly distinguishes soil dynamics from
structural dynamics.

The fundamental objective of the analysis of soil-structure interaction is
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Figure 1-1 Fundamental objective of
analysis of soil-structure interaction.

illustrated in Fig. 1-1. A specified time-varying load acts on a structure embedded
in layered soil. The dynamic response of the structure and, to a lesser extent, of
the soil is to be calculated, taking into account the radiation of energy of the
waves propagating into the soil region not included in the model. The discretized
model of the structure and of the soil domain is shown schematically. The semi-
infinite soil domain, represented by a layered half-space, represents an energy
sink.

1.2 TYPES OF PRESCRIBED LOADINGS,
IN PARTICULAR SEISMIC EXCITATION

Many types of time-varying loads acting directly on the structure can arise:
periodic loads originating from rotating machinery in buildings, impact loads
[e.g., the crash of an aircraft onto a nuclear power plant (which can govern the
design, although the probability of occurrence is small)], blast loadings, and so
on. Probably the most important loading, and definitely the most complicated to
analyze, is earthquake excitation, which acts primarily on the soil.

Earthquakes are caused by a sudden energy release in a volume of rock
lying on a fault. This source is normally located a large distance away and at a
significant depth from the site. Even if all details of how the source mechanism
works and the data of the travel path of the seismic waves to the site were
available (which is, of course, not the case), it would still be impossible to model
all aspects because of the size of the dimensions compared to those of the
structure. In any event, the many uncertainties involved make it meaningless to
analyze the complete earthquake-excitation problem.

Today’s state of the art of earthquake engineering allows only the influence
of the local site conditions on the seismic input motion to be taken into account,
The procedure normally followed can be characterized as follows: In the control
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point located at the surface of the so-called free field (site prior to construc-
tion, i.e., without the excavation and without the structure), the earthquake
motion (e.g., the acceleration as a function of time) is specified (Fig. 1-1). To be
able to do this, the seismic hazard of the region is assessed. The structural
engineer or the licensing authority specifies the acceptable probability that the
earthquake used for design will be exceeded during the life of the structure. In
this evaluation the type of the structure will play an important role. For a poten-
tially hazardous structure such as a nuclear power plant this probability will be
selected to be very small. Tt will be chosen to be somewhat larger but will still
have a dominant effect for a structure which has to remain fully operational
during an earthquake (e.g., a hospital or a fire station). This then allows the
determination of the most important parameter, that which is assumed to
characterize the motion (e.g., the peak ground acceleration). The other param-
eters, such as the duration of the motion and the frequency content, are
selected—mostly empirically—by the engineering seismologist, based on past
earthquakes of the region. All this should allow the source mechanism, the
transmission path, the local geology, and the soil conditions at the site to be
taken into account very approximately. These activities leading to the definition
of a design motion in a selected control point precede the actual soil-structure
interaction analysis. The largest uncertainties arise in these preliminary phases.
Quite arbitrary assumptions with far-reaching consequences have to be made.
It is outside the scope of this work to discuss these very important aspects of
earthquake engineering in any depth.

To analyze soil-structure interaction, it is sufficient to think of the pre-
scribed motion as being derived from an observed record at this very site, or at
least at a similar site. Starting from this control motion in one point, the earth-
quake motion throughout the free field (characterized by its spatial and temporal
variation) is calculated. As will become apparent when discussing the site
response, this can again be achieved only by making quite arbitrary and stringent
assumptions regarding the wave pattern in the control point. These assumptions,
which will, of course, also be influenced by the opinion of the engineering
seismologist as described above, will affect the characteristics of the free-field
response as far as the amplitudes and the frequency content away from the
control point are concerned. However, all solutions are compatible with the local
soil conditions. If, for example, the motion in the control point at the surface is
assumed to arise from vertically propagating waves, the variation of the free-
field motion with depth can be calculated (Fig. 1-1). In this case, the motion
in the horizontal direction is uniform. Besides influencing the free-field response,
the local soil conditions will also affect the actual interaction of the soil-structure
system. Excavating the soil and building the structure cause changes in the
dynamic system. The structure will interact with the soil along the embedment,
thus modifying the seismic motion of the free field. The seismic motion acting
on the structure is thus not known before the soil-structure interaction analysis
is performed. In summary, for seismic excitation, analyzing soil-structure
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interaction consists of two distinct parts: first, determining the free-field response
of the site, and second, calculating the modification of the seismic motion, the
actual interaction, when the structure is inserted into the seismic environment
of the free field. In the following, mostly seismic excitation will be examined.
The loadings applied directly to the structure are, however, contained as special
cases in the general formulation.

1.3 EFFECTS OF SOIL-STRUCTURE INTERACTION

To illustrate the salient features of soil-structure interaction, the dynamic
response of a structure founded on rock is compared to that of the same con-
struction, but embedded in soil. Only qualitative statements are, of course,
possible at this stage. The two identical structures with a rigid base (consisting
of the basemat and the side walls) are shown in Fig. 1-2a. The soil layer rests
on top of the rock. As the distance between the two structures is small, it can be
assumed that in the rock, the incident seismic waves arriving from the source of
the earthquake are the same for both structures. For the sake of simplicity, a
horizontal motion that propagates vertically is selected. The particle motion is
shown in Fig. 1-2 as solid arrows having lengths proportional to the earthquake
excitation. The control point is chosen at the free surface of the rock (point A).

Figure 1-2 Scismic response of structure founded on rock and on soil. (a) Sites;
(b) outcropping rock; (c) free field; (d) kinematic interaction; (¢) inertial interac-
tion.
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From a practical point of view, the motion throughout the rock (e.g., in point B)
will be the same.

For the structure on the rock, this (horizontal) motion can be applied
directly to the base of the structure. The input acceleration resulting in the
applied horizontal inertial loads will be constant over the height of the structure.
During the earthquake, an overturning moment and a transverse shear acting
at the base will develop. As the rock is very stiff, these two stress resultants will
not lead to any (additional) deformation at the base. The resulting horizontal
displacement of the base is thus equal to the control motion; no rocking motion
arises at the base. For a given control motion, the seismic response of the struc-
ture depends only on the properties of the structure.

For the structure founded on soft soil, the motion of the base of the struc-
ture in point O (Fig. 1-2a) will be different from the control motion in the control
point A4 because of the coupling of the structure—soil system. To gain insight into
how the soil affects the dynamic response of the structure, it is convenient to
distinguish between the three following effects. First, the motion of the site in the
absence of the structure and of any excavation, what is called the free-field
response, is modified (Fig. 1-2¢). If there were no soil on top of the rock in point
C of Fig. 1-2c, the motion in this fictitious rock outcrop shown in Fig. 1-2b
would hardly differ from the control motion of the rock in point 4. The presence
of the soil layer will reduce the motion in point C (Fig. 1-2c). This wave will
propagate vertically through the soil layer, resulting in motions in points D and
E which differ from that in C. Points D and E are nodes in the free field which
will subsequently lie on the structure-soil interface (the base) when the structure
has been built. In general, the motion is amplified, but not always (depending
on its frequency content), thus resulting in horizontal displacements that increase
toward the free surface of the site. Second, excavating and inserting the rigid base
into the site will modify the motion (Fig. 1-2d). The rigid base will experience
some average horizontal displacement and a rocking component. This rigid-
body motion will result in accelerations (leading to inertial loads) which will
vary over the height of the structure, in contrast to the applied accelerations in
the case of a structure founded on rock. This geometric averaging of the seismic
input motion will be the result of the so-called kinematic-interaction part of the
analysis, as discussed later in great detail. Third, the inertial loads applied to
the structure will lead to an overturning moment and a transverse shear acting
at point O (Fig. 1-2¢). These will cause deformations in the soil and thus, once
again, modify the motion at the base. This part of the analysis will henceforth be
referred to as “inertial interaction.”

Figure 1-2 also illustrates the main effects of taking soil-structure inter-
action into consideration. First, the seismic-input motion acting on the structure-
soil system will change (Fig. 1-2d). Because of the amplification of the site
(free-field response), the translational component will in many cases be larger
than the control motion and, in addition, a significant rocking component will
arise for an embedded structure. Each frequency component of the motion is
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affected differently, resulting in, for example, an acceleration time history which
is quite different from the control motion. This amplification of the seismic
motion is held responsible for the fact that structures founded on a deep soft-soil
sitehave been damaged more severely in actual earthquakes than have neighboring
structures founded on rock. Second, the presence of the soil in the final dynamic
model (Fig. 1-2¢) will make the system more flexible, decreasing the fundamental
frequency to a value which will, in general, be significantly below that applicable
for the fixed-base structure. The implication of this reduction will depend on
the frequency content of the seismic-input motion. In certain cases, the funda-
mental frequency will be moved below the range of high seismic excitation,
resulting in a significantly smaller seismic input “felt” by the structure. The shape
of the vibrational mode will also be changed. The introduced rocking of the base
will affect the response, especially at the top of a tall structure. Third, the
radiation of energy of the propagating waves away from the structure will result
in an increase of the damping of the final dynamic system (Fig. 1-2e). For a soil
site approaching an elastic half-space, this increase will be significant, leading to
a strongly reduced response. For a soil site consisting of a shallow layer, it is
possible that no waves propagate away from the structure. In this case, only the
material damping of the soil will act, and no beneficial effect on the seismic
response is to be expected. In any soil-structure analysis, it is very important to
determine for a specific site whether the loss of energy by radiation of waves can
actually take place. It is intuitively plausible that the soil-structure interaction
increases the more flexible the soil is and the stiffer the structure is. On the other
hand, it will be negligible for a flexible structure founded on firm soil.

It is obvious from the many opposing effects that it is, in general, impos-
sible to determine a priori whether the interaction effects will increase the
seismic response. If, however, the first effect discussed above (the change of the
seismic-input motion, Fig. 1-2d) is neglected when the interaction analysis is
performed, the response will in many circumstances be smaller than the fixed-
base response obtained from an analysis that neglects all interaction effects.
For this approximate interaction analysis, the control motion is directly used as
input motion in the final dynamic system (Fig. 1-2e). The fixed-base analysis
leads to larger values of the global response, as, for example, the total over-
turning moment and the total transverse shear, and thus to a conservative design.
The displacement at the top of the structure relative to its base may be larger
because of the foundation rocking if one takes soil-structure interaction effects
into account. This could influence the spacings between adjacent buildings and
in very extreme cases also increase the second-order effects. Economic considera-
tions normally dictate that, when designing structures, that reduction in seismic
forces which results from considering the approximate soil-structure interaction
analysis be used. There are also some exceptional cases where the simplified
interaction effects will govern the design. It is important to stress that this
approximate method of calculating the interaction, a method that neglects the
free-field site analysis (Fig. 1-2¢) and the geometric averaging due to the embed-
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ment effect (Fig. 1-2d), is inconsistent. For special structures (e.g., nuclear
power plants) which cannot be designed on the basis of the global response
alone, soil-structure interaction is always analyzed, considering all effects.

It is true that taking the flexibility of the underlying soil into account when
calculating the seismic response of a structure does complicate the analysis
considerably. It also makes it necessary to estimate additional key parameters,
which are difficult to determine, such as the properties of the soil or the conditions
of the embedment. An exact deterministic solution is indeed impossible. The
important aspects of soil-structure interaction can, however, be modeled
approximately in an appropriate model. The results will be physically logical,
but will require engineering judgment to evaluate them. Varying the important
parameters in the analysis should lead to response predictions which will
consequently result in a safe design. Improved procedures should be used even
if uncertainties do exist.

1.4 ASSUMED LINEARITY

Soils behave strongly nonlinearly when excited by the quite high earthquake
levels of interest to structural engineers. True nonlinear analyses are, however,
not yet possible, although quite promising nonlinear constitutive models for soil
do exist. The parameters appearing in these relationships can be selected for a
particular site. The cost of performing such an analysis, although higher than
for a linear calculation, can be justified for an important structure. The reason
is actually conceptional. As explained above, soil-structure interaction for seis-
mic excitation implicitly assumes the law of superposition to be valid. The total
solution equals the sum of the responses of the free field and of the interaction
part when the structure is inserted into the seismic environment of the free field.
But already when determining the free-field site response by starting from the
motion in the control point, superposition is used. This means that a linear
system is actually calculated. It is, of course, possible to select the material
properties so that they are compatible with the strains reached during the
excitation. This can be achieved by iteration, calculating a series of linear
systems, adjusting the material properties at the end of each iteration. The fact
that only linear or such quasi-linear analyses are possible shows how primitive
today’s state of the art of soil-structure interaction for seismic excitation really
is. Within the framework of linear analyses, it is, however, possible to model
the radiation characteristics of the unbounded foundation domain with the same
accuracy as the finite dynamic model of the structure and of the soil represented
in the model. It should also be remembered that linear soil-structure interaction
has to be fully understood before nonlinear methods, which will eventually allow
permanent settlements to be calculated, are developed. This simplification of
performing only a linear analysis should also be seen in connection with the
unsatisfactory way of specifying the seismic motion in the control point, which



8 Introduction Chap. 1

forms the input to the soil-structure interaction analysis. In performing the
analysis, the engineer will vary parametrically the soil properties and study the
sensitivity of the response of the dynamic system for extreme cases. It is to be
expected that the resulting design will be sufficiently conservative.

1.5 TYPES OF PROBLEMS ENCOMPASSED

Although it is not possible to model all details of geometry and material of a
practical problem, the following essential features can be captured. The soil
consists of horizontal layers resting on a half-space, both consisting of isotropic
viscoelastic material with hysteretic damping (Fig. 1-3). The properties vary

O )
=

=

Figure 1-3 Soil-structure interaction system.

with depth but remain constant within the individual layers. This configuration
is called a layered half-space. The structures can be embedded. The shape of the
soil-structure interface is quite general: the basemat and the walls can, for
example, be inclined and can vary from flexible to rigid. Pile foundations are
permissible. The number and the location of the battered and vertical piles of
different lengths and different dimensions of the cross section can be freely
chosen. Buried structures (caissons, tunnels, pipe systems) can be analyzed. The
linear structures can exhibit hysteretic damping. The three-dimensional nature of
the problem is properly represented. More than one structure can be analyzed
at the same time, thus taking the through-soil coupling effects of nearby struc-
tures into account.

As will be shown later, computationally efficient procedures do exist for
calculating all aspects of soil-structure interaction when the soil can be modeled
as a horizontally layered half space (Fig. 1-3). If the soil in the vicinity of the
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structure—soil interface is irregular, the analysis can still be performed. This
finite soil domain can be regarded as part of the structure.

1.6 DIRECT AND SUBSTRUCTURE METHODS

Conceptionally, probably the easiest way to analyze soil-structure interaction for
seismic excitation is to model a significant part of the soil around the embedded
structure and to apply the free-field motion at the fictitious boundary discussed
in connection with Fig. 1-1. (This direct procedure would even allow certain
nonlinear material laws of the soil to be considered.) However, the number of
dynamic degrees of freedom in the soil region is high, resulting in a large
computer-storage requirement and in significant running time. As the law of
superposition has to be implicitly assumed to be valid in a soil-structure inter-
action analysis anyway, it is computationally more efficient to use the substruc-
ture method.

The various aspects of the substructure method are explained in great depth
in other chapters of this text. In this introduction, only a rough idea is needed to
understand the advantages. No equations are developed here. For the embedded
structure shown in Fig. 1-4, the substructure method proceeds as follows. The
nodes of the dynamic model of the structure are shown, whereby those located
along the embedment on the soil-structure interface are indicated as circles.
The free-field response of the site (without any embedment) is calculated first.
It will be shown that these motions are needed only in those nodes at which the
structure is subsequently inserted (shown as circles). The interaction part which
then follows has two steps. In the first, the unbounded soil is analyzed as a
dynamic subsystem. The force-displacement relationship of the degrees of free-

|
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FREE FIELD INTERACTION

Figure 1-4 Seismic soil-structure interaction with substructure method.
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dom of these same nodes, which will be in contact with the structure, is deter-
mined. These so-called dynamic-stiffness coefficients of the soil can physically
be interpreted as a generalized spring, a spring-dashpot system. In the second
step, the structure supported on this spring-dashpot system is analyzed for a
loading case which depends on the free-field motion. Using the substructure
method allows the complicated soil-structure system to be broken down into
more manageable parts which can be more easily checked. The intermediate
results can be interpreted and “smoothed” to take uncertainties into account.
In some cases, parametric studies can be restricted to one part. The important
parameters are more easily identified and their influence on the response more
readily understood. If the free-field motion is changed, the dynamic stiffness of
the soil does not have to be recalculated. The same applies if the structure is
modified during the design process. The two subsystems, the soil and the struc-
ture, can also be calculated by completely different methods. In simple cases,
results applicable to one of the subsystems can be used without any computation.
It is possible to analyze the structure with much more detail than the soil system,
For instance, an axisymmetric solution can be used for the soil in connection
with a full three-dimensional analysis of the nonaxisymmetric structure to
determine the torsional response. In the direct method, in which the responses
of the structure and the soil are determined simultaneously, the structure can be
modeled only very coarsely. It is then often necessary to model the structure more
precisely in a second stage, whereby one applies the resulting motion of the base
of the structure, in order to determine the detailed response. The models of the
structures used in the two stages, however, have to be consistent. This means
that the properties of the coarser model have to be determined by a systematic
reduction procedure from those of the finer one.

The unbounded soil medium can best be described for harmonic excita-
tion. As will be shown later, the dynamic stiffness taking the radiation of energy
into account will be frequency dependent and complex. Material damping can
also easily be introduced for harmonic excitation. This means that linear soil-
structure interaction analysis is best handled in the frequency domain, using
the so-called complex-response method. The advantages of working in the fre-
quency domain are important. The transfer functions allow the first few natural
frequencies and the corresponding approximate damping ratios to be deter-
mined. The accuracy in the intermediate and higher-frequency ranges can be
checked easily. Once the transfer functions have been determined, it is also
possible to calculate efficiently the final response for another seismic environ-
ment.

(Quasi-)linear behavior of the structure-soil system is postulated. The
formulation can, however, be expanded straightforwardly to apply also to the
case in which the nonlinearity is restricted to the structure. A thorough treat-
ment of this procedure, which works in the time domain using convolution
operators, is beyond the scope of this text.
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1.7 ORGANIZATION OF TEXT

The fundamentals of a discrete dynamic system are summarized in Chapter 2.
This then allows the basic equation of motion for the analysis of soil-structure
interaction by the substructure method to be derived in Chapter 3. Using a
simple introductory example, the important effects of soil-structure interaction
are evaluated approximately. The various possibilities of modeling the structure
are discussed in Chapter 4. In Chapter 5 the fundamentals of wave propagation
in Cartesian and cylindrical coordinates are established. This leads to the
dynamic-stiffness matrix of the layered half-space assembled from those of the
individual soil layers and of the rock. The seismic free-field response of the site,
which has to be determined before the actual interaction analysis can be per-
formed, is discussed in Chapter 6. The various types of waves, the vertically
incident and inclined body waves as well as the surface waves, which will make
up the seismic motion, are addressed. Vast parametric studies, which also include
the analysis of actual sites, are evaluated to be able to demonstrate the impor-
tance of the free-field response of a site. Chapter 7 deals with the modeling of the
other substructure, the soil. After reviewing the various possibilities, the
boundary-element method is used to calculate the dynamic-stiffness coefficients
of surface and embedded foundations. Alternative formulations of the equation
of motion are derived in Chapter 8. An approximate method, which works
directly in the time domain, is also included. Chapter 9 contains engineering
applications. The interaction effects, including those arising from horizontally
propagating waves, are evaluated. Examples from actual practice follow. Finally,
the (limited) recorded field performance is compared to the results of the analysis,
which are found to be in good agreement.

SUMMARY

1. A structure excited by a dynamic load (e.g., a seismic motion) interacts with
the surrounding soil. In contrast to the structure, the soil is an unbounded
domain whose radiation condition has to be taken into account in the dynamic
model.

2. Analyzing soil-structure interaction for seismic excitation consists of two
distinct parts: First, determining the free-field response of the site and second,
calculating that modification of the seismic motion which results from the
actual interaction when the structure is inserted into the seismic environment
of the free field. The law of superposition is assumed, and thus linearity as
well.

3. When comparing a structure embedded in soil with the same structure
founded on rock, the seismic motion at the base of the structure is affected in
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three ways: First, the free-field response is modified, usually amplified.
Second, excavation of the soil and insertion of the base of the (massless)
structure into it will alter the seismic input, resulting in an averaging of the
translation and in an additional rotational component (kinematic interaction).
Third, the inertial loads determined from this seismic input will further
change the seismic motion along the base (inertial interaction). Besides
affecting the seismic input, the presence of the soil also makes the dynamic
system more flexible and the radiation of energy of the propagating waves
away from the structure increases the damping of the total dynamic system.

(Quasi-)linear three-dimensional analysis of soil-structure interaction is
possible for one or more structures with flexible or rigid bases of arbitrary
shape embedded in a horizontally layered half-space with material damping.

In the substructure method, the unbounded soil is first examined and can be
represented by a generalized spring, on which the structure is then supported
for the interaction analysis.



FUNDAMENTALS
OF DISCRETE
DYNAMIC SYSTEM

The fundamental equations of a discrete dynamic system are summarized in
this chapter. Only those relations that are actually used in this text are specified.
For a thorough treatment of this subject, including all derivations and a dis-
cussion of the assumptions and limitations, the established textbooks in struc-
tural dynamics and in the theory of vibrations should be studied. The main
objective is to define the nomenclature that is used in this text.

2.1 EQUATIONS OF MOTION IN THE TIME DOMAIN

The elastic continuum is divided into elements interconnected only at a finite
number of nodes. Using the finite-element method to perform the spatial dis-
cretization, the equations of motion are established by assembling the element
matrices. This leads to

[M]{#} + [CIr} + [K)r} = {R} 2.1)
The vector {r}, which is a function of time, contains the displacements of all
unconstrained degrees of freedom of all nodes. A derivative with respect to
time is denoted as a dot. The matrices [M], [C], and [K]represent the mass matrix,
the damping matrix, and the static-stiffness matrix, which are constant for a
linear system. The vector {R} denotes the prescribed loads, which are a function
of time, acting in the direction of the displacements in all nodes. If the loading
case consists partly of prescribed motions as a function of time at support nodes,
the equations are also formulated for these degrees of freedom. In this case the
elements in {R} corresponding to these displacements represent the unknown

13
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reaction forces. Viscous damping is assumed in Eq. 2.1. The radiation of energy
due to the propagation of waves away from the region of interest belongs to
this type of damping (see Section 5.1).

2.2 TRANSFORMATION TO MODAL AMPLITUDES

The free-vibration mode shapes {¢,} and the corresponding natural frequencies
; of the undamped system follow from the solution of the eigenvalue problem

(K¢} = i [M]d,} (2.2)

The vector {¢,} and w? represent the jth eigenvector and eigenvalue, respectively.

Assembling all suitably scaled {¢;} in [®] and all w? as the elements on the diag-
onal matrix [Q], the orthogonality conditions are as follows

[@F[M][®] = [/] (2.3a)

[®I[K][®] = [Q] (2.3b)

where [I] represents the unit matrix. The number of selected mode shapes can

be selected smaller than the number of degrees of freedom.
Introducing the transformation

{r} = [®]{»} (2.4)
where {y} denotes the vector of the modal amplitudes (coordinates), the equa-
tions of motion (Eq. 2.1) are formulated as

{7} + [OF[Cl®}y} + [Qfy} = [OT{R} (2:5)
The vector [®]"{R} is the generalized modal load vector. In general, Eq. 2.5 still
represents a coupled system. If it is assumed that the orthogonality condition
also applies to the damping matrix, Eq. 2.5 is rewritten as

{3} + 200Q1 {3} + [Q)y} = [PT{R} (2.62)
or formulated for each modal amplitude y;:
Vi -+ 2009, + oy, = {¢,F{R} (2.6b)

The diagonal matrix [{] contains as elements the modal damping ratios {,.

As will be demonstrated later (Section 8.4), the orthogonality condition
for damping is (approximately) satisfied for the structure but not for the com-
plete structure-soil system. Classical modes thus do not exist.

2.3 EQUATIONS OF MOTION FOR HARMONIC EXCITATION
For a harmonically varying load with the excitation frequency cw,

{R} = {P} exp (iw?) 2.7
the response (after the initial transient) will be of a similar form:

{r} = {u} exp (iwt) (2.8)
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The vectors { P} and {u} represent the (complex) amplitudes of the loads and of
the displacements, respectively. The equations of motion (Eq. 2.1) are formulated
as

[SHu} = {P} (2.9
where the dynamic-stiffness matrix [S] is specified as
[S]1=[K] + iw[C] — @*[M] (2.10)

The amplitudes {u} follow from Eq. 2.9 by direct solution. As the total system
will always have some damping, [S]is not singular for any w.
The transformation to modal amplitudes can also be performed. With

{u} = [®){z} 211
Eq. 2.9 is transformed to
(9] + i@ [CI®] — w*[I])z} = [PF{F} (2.12)
or if the orthogonality condition is also valid for [C],
(0] + 2iwf;0;, — o)z, = {$,}'{F} (2.13)

In principle, different letters are used in this text to distinguish a variable in the
time domain (e.g., r for the displacement) from the corresponding amplitude
in the frequency domain (x). However, to be able to simplify the nomenclature
in a specific example, this distinction is not enforced if no confusion can arise.
For instance, if in a parametric study the displacement amplitudes u as a func-
tion of frequency are discussed in depth for many cases, and a maximum value
is also shown for a transient excitation, uy,, (and not rn,,) will be used to desig-
nate this quantity.

2.4 CORRESPONDENCE PRINCIPLE

The material damping occurring in the soil and the structure involves a fric-
tional loss of energy. This so-called (linear) hysteretic damping is independent
of frequency. It can be introduced into the solution, when working in the fre-
quency domain, by using the correspondence principle. The latter states that
the damped solution is obtained from the elastic one by replacing the elastic
constants by the corresponding complex ones. This means that for the static-
stiffness matrix

[K*] = [K]( + 280) (2.14)

applies, where { is the damping ratio. Different damping ratios for the two types
of body waves are discussed in Section 5.2. The viscous-damping matrix [C]
representing the radiation of energy in the soil will also be a (much more com-
plicated) function of the elastic constants (see Section 5.1). If no viscous damping
is present, [S] (Eq. 2.10) can be expressed by

[S]=[K1(1 + 24i) — w*[M] - (213)
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After transformation to modal amplitudes, this case is specified as
(@71 + 28i) — w?]z; = {$,]"{P} (2.16)

2.5 DISCRETE FOURIER TRANSFORM

The Fourier integral of the excitation represents a nonperiodic load which can
be regarded as a periodic one of infinite duration. This integral is an extension
of the Fourier series to the case of a load having continuous frequency compo-
nents. The Fourier transform pair formulated for one element of the load vector
is specified as

P(w) — j_: R(7) exp (—icr) dt (2.172)

R() = A f " P(w) exp (ior) doo (2.17b)

The normalization factor 1/(2z) is introduced into the equation for R(z). Some
derivations use this factor in the other equation, that is, in the definition of the
amplitude per unit @ of the load component at frequency @ [= P(w)/(27)]. In
other formulas for the Fourier transform pair, the signs of the arguments of
the exponential functions are reversed.

In the numerical-analysis procedure, the load has to be assumed to be peri-
odic with a finite period 7. To minimize errors the load period is extended by
including an interval of zero load. This so-called quiet zone will allow the free
vibration components of the response of the system to be damped out when the
new period of the load starts. The period T 'is divided into n equal increments of
At each, where for the efficiency of the calculation # is selected as a power of 2.
The frequency span is also divided into the same number of increments Aw,
where the frequency increment (and the lowest frequency) Aw = 2x/T. With
t; =jAt = jT/n and w, = 1Aw = 2a/T, Eq. 2.17a formulated as a finite
sum of discrete terms equals

n—1 3
P(w) = Ar'S R(,) exp (-27”"%) 1=0,1,...,n—1 (2.18a)
j=o
and the inverse transform (Eq. 2.17b) is specified as
n—1 7
R(;) =395 p(w,) exp (2m"i) j=0,1,...,n—1 (2.18b)
2 =t n
As the nonperiodic load is actually replaced by a suitably chosen periodic one,
this numerical-analysis procedure can also be used to calculate periodic loads
as, for example, arising from machine vibrations. The term Aw P(w,)/(27)
represents the Fourier coefficient for the frequency w,.

When evaluating the discrete Fourier transforms, a lot of duplication will
occur when evaluating the exponential functions. Taking full advantage of this
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fact, using a binary representation and applying the results of one step imme-
diately in the next, a very efficient scheme results, which is called the Fast Fourier
Transform.

The highest frequency @, contained in the load equals

— " Aw =%
Dmex = 5 Aw = A7 (2.19)

2.6 METHOD OF COMPLEX RESPONSE

By applying the discrete Fourier transform to the loads discretized at discrete
points {R(¢;)}, the amplitudes of the loads in the frequency domain {P(ww,)}
calculated at all discrete frequencies w, are determined (Eq. 2.18a). In analogy
to Egs. 2.9 and 2.10, the equations of motion in the frequency domain are equal
to
[S(wplu(w)} = {P(w)} (2.20)

with

[S(w)] = [K] + iw[C] — wi[M] (2.21)
The soil’s contribution to [K] and [C] will in general depend on w, (Sections
5.1 and 9.1). The material damping of the structure can be included by using
[K*] instead of [K] (Eq. 2.14). Solving Eq. 2.20 for {u(w,)} results in the ampli-
tudes of the displacements in the frequency domain. Using the inverse transform
of Eq. 2.18b, but formulated for the displacements

(rlt)} = 52 12:, u(w,) exp (27;1'%) 2.22)

the displacements in the time domain at discrete points {r(z,)} follow.

The equations of motion in the frequency domain are never solved for all
points of the Fourier transform. The frequency increment to solve Eq. 2.20 is
selected as quite large, possibly smaller in the neighborhood of the first few
peaks of the response occurring at the natural frequencies of the system. Inter-
mediate values follow by interpolation, whereby the analytically available solu-
tions for systems having one or two degrees of freedom (anchored at the
calculated frequencies) can be used.



BASIC EQUATION
OF MOTION

3.1 FORMULATION IN TOTAL DISPLACEMENTS
3.1.1 Flexible Base

To derive the basic equations of motion, it is sufficient to examine a single
structure embedded in soil for earthquake excitation (Fig. 3-1). The structure’s
base consisting of the basemat and of the adjacent walls is assumed at first
to be flexible. The structure is discretized schematically as shown. Subscripts
are used to denote the nodes of the discretized system. The nodes located on
the structure—soil interface are denoted by b (for base), the remaining nodes of
the structure by s. In the substructure method no nodes are introduced in the
interior of the soil.

The dynamic system consists of two substructures, the actual structure and
the soil with excavation. To differentiate between the various subsystems,
superscripts are used when necessary. The structure is indicated by s (when
used with a property matrix), the other substructure, the soil with excavation,
by g (for ground). In the following it is appropriate to work also with other
subsystems for the soil (Fig. 3-2). The soil without excavation, the so-called free
field, is denoted by £, and e is used to designate the excavated soil.

The dynamic equations of the motion are formulated in the frequency
domain. The amplitudes of the total displacements are denoted by {«‘}, which
is a function of the discrete value of the frequency w. The subscript used to
indicate a discrete value of @ in Egs. 2.20 and 2.21 is deleted. The word “total”
(superscript #) expresses that the motion is referred to an origin that does not

18
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Figure 3-1 Structure-soil system.

M |g|

Figure 3-2 Reference subsystems.

move. The order of this vector equals the number of dynamic degrees of freedom
of the total discretized system. The vector {¥‘} can be decomposed into the
subvectors {u!} and {u}}. The vector symbols are deleted in Fig. 3-1 for the sake
of conciseness. The dynamic-stiffness matrix [S] of the structure, which is a
bounded system, is calculated as (Eq. 2.15)

[S1= [K)(1 + 2{i) — *[M] 3.1

where [K] and [M] are the static-stiffness and mass matrices, respectively. The
hysteretic-damping ratio {, which is independent of frequency, is assumed to be
constant throughout the structure. The formulation can straightforwardly be
expanded to the case of nonuniform damping. Some formulas, however, cannot
be written so concisely. [S] can also be decomposed into the submatrices [S,,],
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[S,,), and [S;,). To avoid using unnecessary symbols, the superscript s (for struc-
ture) is used only when confusion would otherwise arise. The equations of
motion of the structure are formulated as

r
[[S:s][ssb]:| {{us}} — {{Ps}} (3.2)
[S5:]0S351 | ({}} {Py}
where {P,} and {P,} denote the amplitudes of the loads and of the interaction
forces with the soil, respectively.

The dynamic-stiffness matrix of the soil [S%,] (Fig. 3-3) is not as easy to
determine as that of the structure, as the soil is an unbounded domain. Con-
ceptionally, [S%,] could be determined by eliminating all degrees of freedom not
lying on the structure-soil interface of a mesh of the soil extending to infinity.
The vector {uf} denotes the displacement amplitudes of the soil with excavation
for the earthquake excitation. For the reference system of the free field, [Sf,
and {u{} are the dynamic-stiffness matrix and the vector of displacement ampli-
tudes, respectively. The dynamic-stiffness matrix [Sf,] of the excavated soil, a
bounded domain, follows analogously from Eq. 3.1, using the properties of
the soil.

FREE FIELD SCATTERED

Figure 3-3 Dynamic-stiffness matrix and earthquake excitation referred to dif-
ferent reference systems of soil.

For earthquake excitation, the nodes not in contact with the soil (the sub-
script s stands for the structure) are not loaded. Setting {P,} = {0} in Eq. 3.2
leads to

) _
) G

Both substructures contribute to the dynamic equilibrium equations of the
nodes b lying on the structure-soil interface. The contribution of the soil is
discussed first. For the displacement amplitudes {uf}, the interaction forces
acting in the nodes b, arising from the soil with excavation, vanish, as for this

[[s“][ss,,n{
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loading state, the line that will subsequently form the structure—soil interface
is a free surface (Figs. 3-2 and 3-3). The interaction forces of the soil will thus
depend on the motion relative to {uf}. They are equal to [S&I({uj} — {uf}).
Including the contribution of the structure ({P,} in Eq. 3.2), the equations of
motion for the nodes in contact with the soil (subscript b) are formulated as

[Sp, et} + [Siol{ui} + [S&I(us} — {ug]) = {0} (3.4

Combining Egs. 3.3 and 3.4, the equations of motion of the total structure-soil
system are

i:[sbs] [Sis] + [SE ] {"b} [SEHus} 3.3)

In this formulation, the earthquake excitation is characterized by {u§}, that is,
the motion in the nodes (which will subsequently lie on the structure-soil
interface) of the ground with the excavation. This so-called “scattered” motion
is not easy to determine. It is desirable to replace {uf} by {uf}, the free-field
motion, which does not depend on the excavation (with the exception of the
location of the nodes in which it is to be calculated).

The free-field system results when the excavated part of the soil is added
to the soil with excavation (Fig. 3-3). This also holds for the assembly process
of the dynamic-stiffness matrices

[S5] + [S&] = [S7] (3.6)
By stipulating that the “structure” consist of the excavated part of the soil only,

Eq. 3.4 can be formulated for this special case. With [S,,] = [0], [S},] = [S5.],
and {uj} = {ul},

([S5e] + [SED{uf} = [SE){ut} (3.7
results. Introducing Eq. 3.6 in Eq. 3.7 leads to
Stlul} = [SEHut} (3.8)

This equality of forces is quite a remarkable result in its own right. Although
for the substructure of the soil with excavation, the line with the nodes b (where
the motion is equal to {uf}) is a free surface, as discussed above, the forces
[S&}{ug} are not zero. The influence of an exterior boundary with an applied
earthquake motion also has to be taken into account when calculating the forces
in nodes b. This is explained further in Section 8.2, where the basic equations of
motion are rederived starting from those of the direct formulation of soil-
structure interaction.

Substituting Eq. 3.8 in Eq. 3.5 results in the discretized equations of

motion
[Ss:] I [ sb] {ut} {0}
[[Sbs] (S + [ J{{ub}} {s,,f,, {ui}} 39

In this formulation in total displacements, the load vector is expressed as the
product of the dynamic-stiffness matrix of the free field [S7,] (discretized in the
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nodes at which the structure is subsequently inserted) and of the free-field
motion {«f} in the same nodes. This physical interpretation is remarkable. The
load acts only on the nodes b at the base of the structure. The interaction part of
soil-structure analysis is thus formulated as a so-called source problem, with
the source being located on the structure—soil interface. Only outgoing waves
that propagate toward infinity arise (see Section 7.1). As expected for seismic
excitation, the nodes s not connected with the soil are unloaded. It should be
emphasized that in the system f for which [S7,] is calculated, the soil is not exca-
vated (Fig. 3-3). As the boundary of the free-field region is regular, [Sf,] should
be easier than [S%,] to calculate (see Section 7.5.3). The vector {u} has only to
be calculated in those nodes b which subsequently will lie on the structure-soil
interface. Procedures to determine [SE)], [S%,] and {u}} are discussed in depth
in Chapters 7 and 6, respectively. The derivation of the basic equations of motion
is based on substructuring with replacement. By adding the excavated part of
the soil (system e) to the irregular system g, a regular system f'is formed on which
the load vector depends. See Problems 3.2, 3.3, and 3.4 for further applications
of this concept, which is also valid for applied loads and not only prescribed
motions.

The amount of interaction of the embedded part described by the left-
hand side of Eq. 3.9 depends on [S§,] + [SE], which, after making use of Eq.
3.6, is equal to

[S3:] + [S&] = [S3:] — [St] + [Sl{b] (3~10)
The difference of the property matrices of the structure and of the soil in the
embedded region [S},] — [S%,] is thus of importance. Using Eq. 3.10, Eq. 3.9 is
reformulated as

[S:s] E [S:b] {{u;} — { {0} 3 11
[[s,,s] | IS5] — S5] + [sz,,]] {u:,}} [S{b]{u{}} .11)

This represents the equations of motion of a discretized system (consisting of
the structure and in the embedded region of the difference of the structure and
of the soil) supported on a generalized spring described by [S],]. The excitation
consists of a prescribed support motion {u]} acting at the end of the generalized
spring that is not connected to the structure. This is shown schematically in
Fig. 3-4, where the matrix and vector symbols as well as the subscripts have been
omitted. It is important to note that the support motion to be applied at the
end of the generalized spring is the free-field response {u]} at the structure-soil
interface and not at some (fictitious) boundary at a depth where the underlying
medium can be regarded as very stiff. For instance, consider a structure supported
on the surface of a layer of soil resting on rigid bedrock. The generalized spring
represents the stiffness and damping of the layer built in at its base at the top of
the bedrock. The applied support motion is the free-field response at the free
surface of the layer and not at its base. For a better understanding of the fore-
going, it is helpful to think of the generalized spring as having a length approach-
ing zero.



Sec. 3.1 Formulation in Total Displacements 23

1.

@/M' /1) S: .
N . 4D

U'

'7 %ﬁ: s'-s°

Figure 3-4 Physical interpretation of basic equation of motion in total displace-
ments (flexible base).

Equation 3.9 describes the basic equations of motion, formulated for a
structure with a flexible base. It represents a simple, but general procedure to
calculate even the most general case of soil-structure interaction. All other
formulations which are derived in Sections 3.2, 8.2, and 8.3 are not more power-
ful. They are discussed only because valuable physical insight can be gained
from the equations, which work with relative displacements.

Equation 3.8 could be used to calculate the “scattered” earthquake excita-
tion {uf}:

{ug} = [S&] ' [ShH){ui} (3.12)
It is, however, unnecessary to determine this seismic motion of the soil modified
by the excavation {uf} (Fig. 3-3), as Eq. 3.9 can be used. It is worth mentioning
that {uf} has no real existence (i.e., it does not occur in the real soil-structure
system).

3.1.2 Rigid Base

The base, consisting of the basemat and the adjacent walls, can be
assumed to be rigid for many practical applications (see Section 4.3). This
compatibility constraint on the structuresoil interface leads to a slight modi-
fication of the formulation. At the same time the physical significance of the
terms appearing in the equations can be discussed.

The same structure-soil system of Fig. 3-1 is shown, but with a rigid base
in Fig. 3-5. In this case, the total motion at the base {u}} can be expressed as a
function of the total rigid-body motions of a point O {u}} as

{up} = [A}{ui} (3.13)
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Figure 3-5 Structure—soil system with
rigid base.

For a three-dimensional base, {#} contains the amplitudes of three displace-
ments and three rotations. The matrix [4] represents the kinematic trans-
formation with geometric quantities only. In Problem 3.1 the [A]-matrix for a
two-dimensional case is presented.

For a rigid base, the motion of the structure-soil interface which represents
the boundary between the two subsystems thus depends only on {u}}. Compared
to a flexible base, the number of degrees of freedom is reduced. In the substruc-
ture of the soil with excavation (system g), the compatibility constraints of the
rigid base are enforced (Fig. 3-6). The base is massless (dashed line). Obviously,
the free-field motion is unchanged.

Figure 3-6 Reference soil system with
excavation and rigid structure-soil inter-
face.

Introducing this transformation of variables,

{gﬂ - [[1] [A]jl ﬁ:i} (3.14)

in Eq. 3.9 and premultiplying by the transposed transformation matrix defined
by Eq. 3.14 leads to

CAERTR {u;}} :{ (0} } ,
[[sul s3] + [sgj{{u:,} AVSLI) 319
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where
[S.0) = [S.:)[4] (3.16a)
[S5.] = [AT[S3,1[4] (3.16b)
(%) = [AT"[S&114] (3.16¢)

[I] denotes the unit matrix. [S:,], [S,], and [S,] = [S,]" are the dynamic-
stiffness submatrices of the structure with a rigid base. They are normally
directly established when discretizing the structure by selecting models that take
account of the geometric constraints of the rigid base. Equations 3.16a and b
are thus not explicitly used. [S%,] represents the dynamic-stiffness matrix of the
soil with excavation for a rigid structure-soil interface (Fig. 3-6). In a general
three-dimensional case, [S%,] describes the amplitudes of the three forces and
moments acting in point O which lead to unit amplitudes of displacements and
rotations in the same point of the rigid base connected to the soil.

Equation 3.15 represents the equations expressed in total motion. As in
the case of a flexible basemat, the load vector depends on the free-field motion
{uf} in those nodes that will subsequently lic on the structure-soil interface.
The load vector [A)][S£]{u{}, which in a three-dimensional case consists of three
forces and three moments, acts in point O of the rigid base. No need really
exists to calculate the motion of any other reference soil system.

To gain insight into the pbysical significance of the load vector, it is mean-
ingful to calculate the seismic motion of the ground system (soil accounting for
the excavation) with the compatibility constraints of the rigid base enforced.
The seismic motion of this reference subsystem shown in Fig. 3-6 is denoted as
{uf} and represents a scattered wave motion. The compatibility constraints of
the rigid base for the soil-subsystem g are formulated analogously as in Eq.

3.13:
{uf} = [AH{ut} (3.17)
Substituting this equation in Eq. 3.8, premultiplying by [4]", and using
Eq. 3.16c results in
[S5){us} = [AV[SL:){uf} (3.18)
or
{ug} = [S&] '[AT IS Hul} (3.19)
This equation can, of course, be derived directly from Eq. 3.15, deleting all
matrices associated with the structure, and setting {s!} = {u£}. As {u{} along the
walls of the embedded structure varies with depth, a rotational component is
also present in {u£} even for vertically propagating shear waves.
Substituting Eq. 3.18 in Eq. 3.15 leads to the equivalent of Eq. 3.5 for a
structure with a rigid base.

(S]] [S.] H{uz} _ { ) } 0
[[So,] L [S5.] + [S%, {u:,}} [S&}{us} 329

This equation in total motion can be physically interpreted as illustrated in
Fig. 3-7. The discretized structure specified by [S*] is supported on a generalized
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Figure 3-7 Physical interpretation of basic equation of motion in total displace-
ments (scattered waves).

spring characterized by [S%,]. The end of the generalized spring not connected
to the structure is excited by {u£}, which is calculated from {«{} and [Sf,]. This
interpretation is also valid with minor adjustments for the structure with a flexi-
ble base (Eq. 3.5). The vector and matrix symbols, as well as the subscripts, have
been deleted in Fig. 3-7. By setting {s}} = {0} in Eq. 3-20, it can be deduced that
[S5J{u5} represents the amplitudes of the forces exerted on the rigid base in
point O by the seismic motion when the base is kept fixed. They are sometimes
called driving forces. Equation 3.5 can be interpreted analogously for a structure
with a flexible base.

3.1.3 Special Foundations

It is assumed that the soil on the exterior of the line with nodes b consists
of a layered half-space, as discussed in Chapter 1. This allows efficient formula-
tions to be used to calculate [S£,] and {u{}. Normally, this line will coincide with
the base of the structure and thus form the structure-soil interface. If, however,
an irregular soil region around the structure exists, as shown in Fig. 3-8, the
basic equation (Eq. 3.9) can still be used. In this case, the bounded irregular soil
region is regarded as part of an expanded structure. The nodes b lie on a line
separating the irregular soil region and possibly the base of the structure from
the regular horizontally layered soil region.

The basic equations of motion (Egs. 3.9 and 3.15) not only apply to the
single embedded structure shown in Figs. 3-1 and 3-5, but can also be used to
analyze the more general structural configurations discussed in Chapter 1 in
connection with Fig. 1-3. In this case, {1} contains the degrees of freedom of
the nodes lying on the structure-soil interfaces of all structures, for a pile founda-
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Figure 3-8 Structure-soil system with
irregular soil region. b

tion of the nodes along all piles. The matrices [S},] and [S%] are full. Analogously,
the other degrees of freedom of all structures are assembled in {u;}. Each struc-
ture contributes to the dynamic-stiffness matrix of the total structural configura-
tion. Part of the structure-soil interface can be flexible, and part of it rigid. This
case is illustrated schematically in Fig. 3-9 for an embedded structure with a
rigid basemat and adjacent walls supported on piles. Nodes b lying on the line

which subsequently will form the rigid base and nodes b are introduced. The
dynamic degrees of freedom are {«'}, {u¢}, and {1}}. The motion of the nodes b
can be expressed as a function of {u}}, defining [A]. The load vector corresponding
to the dynamic-equilibrium equations of point O equals [A]([S%l{u}} +

£ ){u%}); that of nodes b equals [S{sl[uf] + [STJ{ul}-

For the special case of rigid soil the formulation is also valid. In this case,
no soil-structure interaction occurs; the structure is built in at its base with the
prescribed motions {#;}. This also follows from the equation of motion at the
base (from Eq. 3.5: {u} = {u§}). The equations of motion of the built- in struc-
ture with prescribed motions at its base {u}} are derived from the equations

Figure3-9 Structure supported on piles.
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corresponding to the nodes of the structure not lying on the base. The equations
expressed in the total motion {#:} follow from Eq. 3.5 as

(S, Jus} = —[Sl{ui} (321
As expected, only the dynamic-stiffness matrix of the structure appears in the
equations.

3.2 KINEMATIC AND INERTIAL INTERACTIONS

In the equations of motion formulated in total displacements (Eq. 3.9), the loads
for earthquake excitation are applied only at the nodes located on the structure—
soil interface. The structural engineer is, however, accustomed to work with
seismic inertial loads (calculated as the product of the mass of the structure and
some suitably chosen earthquake excitation) which are applied in all nodes of
the structure. In general, this excitation is not equal to the free-field motion,
but has to be determined prior to the actual dynamic analysis. The analysis is
thus performed in the following two steps. The total displacements can be split
into those caused by the so-called kinematic interaction (superscript k) and by
the inertial one (superscript 7).

3.2.1 Flexible Base

For a structure with a flexible base (Fig. 3-1), this procedure results in
{ui} = {uf} + {ul} (3.22a)
{us} = {uf} + {u} (3.22b)

In the kinematic-interaction part, the mass of the structure is set equal to zero
by definition. Introducing this condition in Eq. 3.5 and using Eq. 3.1 results in

[(1 +2UDK | (1 2ADIK,] ] {{uf}} _ { (0} } (323)
(1 4+ 20D[K,) § (1 + 20)[K 3] + [SE)] {usY — UISEKug} '
Using Eq. 3.8, the nonzero load vector could also be formulated as [S],]{u/}.

From the set of equations associated with nodes s, it follows that

{u’:} = _[Kss]_l[Ksb]{ulb‘} = [T.rb]{u{bc} (3‘24)

The matrix [T,,] represents the quasi-static transformation, which is a function
of the static-stiffness matrix of the structure. Each column of [T,,] can be
visualized as the static displacements of the nodes s of the structure when a unit
displacement is imposed at a specific node b. All other displacements at the
nodes b are zero, and no loads are applied at the nodes s. In general, geometry
alone is not sufficient to calculate [T,].

Substituting Eq. 3.24 in Eq. 3.23 leads to

(1 + 20K 3] — (Ko (K, [Koo]) 4 [SEDuk} = [Shl{us} = [SHMuf}  (3.25)

For a general configuration, the displacement amplitudes for kinematic interac-
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tion of the nodes located on the structure-soil interface {uf} differ from those
of the scattered motion {#} (and also from the free-field {uf}). For a structure
supported on the surface (Fig. 3-10), [S§] = [SL), as [Sg) = [0} (Eq. 3.6 and
Fig. 3-3). For vertically incident body waves, the elements in {u}} are constant
for the nodes b located on the free surface. For a horizontal and vertical uniform
earthquake excitation, {uf} contains the constant amplitudes of this motion
denoted as u* and u, respectively, shown in Fig. 3-10. Multiplying ([K;;} —
[K,. K., [K.5]) with this vector results in zero forces, as the structure moves
as a rigid body. Thus for a surface structure excited by vertically incident waves,
{u¥} equals {uf}. In this case [T,,] can be established from rigid body kinematics
(horizontal and vertical translations #" and u?). For the sake of conciseness, the
vector and matrix symbols as well as subscripts have been deleted in Fig. 3-10.

SS

-

KINEMATIC 'Y INERTIAL

Figure 3-10 Physical interpretation of kinematic and inertial interactions (sur-
face structure with vertically incident waves).

Proceeding further with the derivation of the formulation, Eq. 3.22 is
substituted in Eq. 3.5, and making use of Eq. 3.23 leads to the equations of
motion for the inertial interaction part

[Sed i [Sal {{ui}} _ 2[[M,,][M,,,]} {{ul;}}
[[Sb:] .: [S3:] + [Sfbi| {us} ® M, JIM3,) ] ({uf} (3.26)

The term w?*{u*} represents the negative-acceleration amplitude of the kinematic
motion. For the inertial-interaction part of the dynamic response, the load
vector thus consists of the negative inertia loads (mass of structure times accelera-
tion) determined from {u*} (and not from {uf}). The presence of this familiar
load term represents the advantage of this method.
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Summarizing, by omitting the mass of the structure and subjecting the
dynamic system to the same load vector (which depends on the free-field motion),
the kinematic motion is first calculated. The latter determines the loading to be
applied in the actual dynamic analysis, the inertial interaction part. The pro-
cedure is illustrated in Fig. 3-11. As, however, for a flexible basemat, the
equations of motion for the kinematic-interaction part (Eq. 3.23) are just as
complicated as those for the total motion (Eq. 3.9), this procedure should not
be used. For a rigid basemat, this method is appropriate, as is demonstrated in
the following.
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Figure 3-11 Physical interpretation of kinematic and inertial interactions (flex-
ible base).

3.2.2 Rigid Base

For a structure with a rigid base (Fig. 3-5) the total motion is split up into
those caused by kinematic and inertial interactions. Analogously to Eq. 3.22,

{ui} = {ul} + {ui} (3.27a)

{ue} = {ug} + {u} (3.27b)
can be formulated.
Setting the mass of the structure equal to zero for the kinematic-interac-
tion part of the analysis transforms Eq. 3.20 to

[(1 + 200K (1 + 200K, }{{u’i}} _ { {0}

= 3.28
(1 + 200K, | (1 + 200K + (s8] it} [Sz.,]{u:}} (3.28)
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Solving this equation leads to

{ul} = [T, Hut} (3.292)
{uf} = {ug} (3.29b)

with
[T:a] = —[K::]—I[Kxo] (3.30)

The quasi-static transformation matrix [7’,] is determined formally from the
static part of the equilibrium equations of nodes s in Eq. 3.28. This matrix is
not actually calculated using Eq. 3.30, but follows directly from rigid-body
kinematics, analogously to the matrix [4]. The matrix [T,,] depends on geometric
quantities only and not on the stiffness properties of the structure. This is illus-
trated in Fig. 3-12. For the sake of clarity, the inner part of the structure shown
in Fig. 3-5 is deleted. The undeformed structure is shown as a thin line, the
displaced structure for kinematic interaction as a dashed line, and the deformed
structure exhibiting the total motion as a solid line. The symbols for vectors and
matrices are omitted.

Figure 3-12 Kinematic and inertial
motions.

In deriving Eq. 3.29b, use is made of
[K;o] - [Kas][K.r.r]_l[K:a] = [O] (3'31)

which expresses static equilibrium of the structure.

It follows from Eq. 3.29b that the motion of the rigid base in the kinematic-
interaction part of the analysis (structure massless) is the same as that of the
ground enforcing the rigid-body kinematics along the base. This is obvious, as
the presence of a massless structure does not change the response of the base.
With {u¢}, the kinematic interaction part of the motion follows throughout the
structure using rigid-body kinematics (Eq. 3.29a).

Substituting Eq. 3.27 in Eq. 3.20 and using Eq. 3.28 leads to the equations
of motion of the inertial-interaction part:

[Seli Skl {{u';}} _ 2[[M,,][M,,,]} {{u’,‘}}
[[s.,,] VS5 + [Sga} wy = O e ) (3.32)

The load vector is equal to the negative product of the mass of the structure
and of the seismic-acceleration amplitude, the latter being determined by apply-
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ing the acceleration amplitude {#f}(= —?*{uf}) in point O at the base and
applying rigid-body kinematics.

The kinematic and inertial motions are illustrated in Figs. 3-12 and 3-13.
Summarizing, from the knowledge of the free-field response {#/}, the motion
of the kinematic interaction {u*}(= {ug}) follows from Eq. 3.19. Using rigid-body
kinematics, the inertia loading to be applied throughout the structure in the
inertial-interaction part of the analysis is determined. This physical interpreta-
tion of {u##} is important. The structure is supported on the generalized spring;
no support motion is applied for the inertial-interaction part. Figure 3-13 should
be compared to the corresponding one illustrating the formulation in total
motions using scattered waves (Fig. 3-7). Reference should also be made to the
discussion in Chapter 1 in connection with Fig. 1-2¢, d, and e.
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Figure 3-13 Physical interpretation of kinematic and inertial interactions (rigid
base).

In the formulations derived above, for the substructure of the soil with
excavation (system g), the compatibility constraints of the rigid base are enforced.
The base is assumed to be massless. This is indicated in the figures by showing
the base as a dashed line. Alternatively, it is possible to develop formulations
where the mass of the base is included in the subsystem of the soil. This not only
affects [S%] and {u#} but also the modeling of the actual structure, which does
not include the mass of the base. The inertial-interaction part of the dynamic
analysis is modified as well. This scheme is not further investigated.

Other possibilities exist to split the total motion into two parts. For
instance, the free-field response can be used to define one part. This method of
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the so-called quasi-static transmission of the free-field input motion and other
procedures are discussed in Sections 8.2 and 8.3.

3.3 APPLIED LOADS AND THEIR CHARACTERIZATION

3.3.1 Rotating Machinery

‘Unbalanced mass in rotating machinery installed in buildings will lead to
periodic loads acting on the structure, as over a very large number of cycles
virtually the same variation of the load with time will occur. In general, loads
and moments acting in all three directions will be applied to the structure. As
an example, the vertical component R(z) determined as the resultant of the mea-
sured vertical reactions of the four supports of a weaver’s loom (Sulzer-Ruti
Machinery Works Ltd. 8630 Ruti, Switzerland) is plotted over a complete cycle
of 360° in Fig. 3-14. The weight of the machine operating at 9 Hz equals 27.46
kN, which is shown as a dashed line. The amplitudes of the load in the frequency
domain P(w) = Re(P) + iIm(P) follow from Eq. 2.18a [multiplied by
Aw/(2m)]. The absolute value ./[Re(P)]* + [Im (P)}* and the phase angle
arctan [Im (P)/Re (P)] of the first harmonic (at 9 Hz) and of the higher ones up
to the twentieth (at 180 Hz) are shown in Table 3-1. Transients also have to
be investigated, resulting, for example, from the starting-up procedure of the
machine or from extraordinary conditions, as a short circuit.
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Figure 3-14 Vertical periodic load over one cycle.
3.3.2 Impact

As an example of a short-duration nonperiodic load, the impact forces are
discussed. If the target (i.¢., the structure) has a large mass and is quite stiff
compared to the missile, the interaction occurring between the missile and the
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TABLE 3-1 Fourier Amplitudes of the Vertical
Periodic Load

Amplitude
Harmonic Absolute Value Phase Angle

Number (kN) (deg)
1 1.518 138
2 1.223 59
3 0.555 — 16
4 0.695 —126
5 0.580 74
6 0.232 —142
7 0.144 —129
8 0.052 — 43
9 0.122 131
10 0.107 38
11 0.063 — 81
12 0.061 —103
13 0.080 —144
14 0.048 —165
15 0.132 — 86
16 0.177 —137
17 0.052 73
18 0.029 —154
19 0.012 0
20 0.016 0

target during impact can be neglected. This applies, for example, for the postu-
lated aircraft crash on certain structures of nuclear-power plants. In this case
of a soft missile, a load-time relationship for impact on a rigid target can be
established which depends on the initial velocity », of the missile, and on the
distribution of its mass and of its buckling load. The force-time diagram for
a Boeing 707-320 crashing onto a rigid target is shown in Fig. 3-15.

3.3.3 Earthquake

Earthquake time histories recorded on firm ground are quite irregular.
This is caused by the complexities of the source mechanism, the reflections and
refractions at the irregular interfaces, and the dispersion of the waves along the
travel path.

For a ground motion r,(¢) specified in the time domain, the Fourier trans-
form u(w) (Eq. 2.17a) is a complete measure, as its (inverse) transform recovers
-.{#). For engineering-design aspects, the response spectrum that specifies the
maximum response of a one-degree-of-freedom dynamic system excited by r(z)



Sec. 3.3 Applied Loads and Their Characterization 35

w00l Vo=200m/s

200

100

-
§ 40
5
= 5 0
W
g 10
25

e

4

2

\10
1 T T T T
0.4 0.6 o8 1.0 1.2

TIME (S1]

Figure 3-15 Force-time diagrams for Boeing 707-320.

represents a more important characterization (Fig. 3-16a). The maximum rela-
tive displacement r.,, is calculated by varying the natural frequency @ = kIm
and the damping ratio { = ¢/(2./km) of the dynamic system. This so-called
spectral displacement S; = Fp,x is used to define two other related measures:
the spectral pseudo-velocity S, = wS;, which is statistically very close to the
maximum relative velocity 7. (With the exception of very low frequencies),
and the spectral pseudo-acceleration S, = w?S,, which from a practical point
of view is equal to the maximum total acceleration 7%,,,. Because the three spectral
values are related by powers of the natural frequency w, the response spectrum
can be displayed on a so-called tripartite plot, from which all three spectral
values can be read. A total of four logarithmic scales are present. As an example,
the response spectra of an acceleration time history of the 1971 San Fernando
earthquake, the H 115 record with the N 11E component with 7, m,x = 0. 134 m,
Fomx = 0.282m/s, and F, n,x = 0.224 g(Fig. 3-16b) are plotted for the indicated
damping ratios { in Fig. 3-16c. The shape is jagged, reflecting the incidentals of
a particular ground motion.

To determine the shape of the design-response spectrum, the response
spectra of comparable excitations which can be expected at the site are processed
statistically. This processing results in the peaks and dips being smoothed out.
Different frequency ranges will be governed by different sizes and locations of
earthquakes. In particular, by including specific records of potential earth-
quakes that could occur, the engineering seismologist can contribute significantly
to a realistic shape of the design-response spectrum applicable to a specific site.
The duration of the earthquake does affect the shape, as the longer the shaking,
the larger the chance is of a large response arising. As the shape will be a smooth
curve, small deviations of the dynamic properties of the system will have only
a negligible influence on the structural response.
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Figure 3-16 Response spectrum. (a) One-degree-of-freedom dynamic system;
(b) acceleration time history, 1971 San Fernando earthquake, H 115 record with
N 11E component (after Ref. [1]); (c) corresponding response spectra as tripartite
plot.

Spectral shapes have been derived which are intended at least for a certain
class of structures for general application. For instance, the U.S. Nuclear Regu-
latory Commission (NRC) published in December 1973 the revised Regulatory
Guide 1.60, “Design Response Spectra for Seismic Design of Nuclear-Power
Plants,” which is applicable for a wide range of sites, excluding unusually soft
ones. . ‘
The shapes of the spectra for the horizontal direction are shown as dashed
lines for { = 0.02, 0.05, and 0.10 in Fig. 3-17b. Possibly, for very flexible struc-
tures (which are hardly to be encountered in a nuclear-power plant) with a
natural frequency below 1 Hz, the specified values are not conservative enough.
For the vertical direction, the design spectrum can be selected as two-thirds of
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Figure 3-17 Design motion. (a) Artificial acceleration time history; (b) hori-
zontal U.S. NRC design response spectrum, normalized to 1.0g.

the value in the horizontal one throughout the frequency range of interest, or,
for a near-field earthquake, can even be selected as equal.

Based on a seismic hazard study and after selecting the acceptable prob-
ability that the earthquake used for design will be exceeded, the anchor value
follows which is needed to scale the response spectrum. The anchor value is
normally chosen as the maximum (effective) acceleration of the ground motion.
This high-frequency acceleration of the response spectrum directly determines
the total acceleration loads for structures which are quite stiff. In other cases,
the maximum relative velocity, which is a measure of the kinetic energy, could
possibly be used.

Once the design-response spectrum is known, the maximum force can
easily be calculated for a single-degree-of-freedom system. It is determined as
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(Fig. 3-17b) kr ., = kS,, or, alternatively, as mS,. Fora multi-degree-of-freedom
system with classical modes, the maximum response also follows directly from
the design-response spectrum, assuming a certain combination of the contri-
butions of the individual modes. For a typical soil-structure interaction system,
classical modes, however, do not exist. In this case, so-called artificial time his-
tories, which are compatible with the design-response spectrum, have to be
calculated. This also applies in other circumstances, for example, when a sub-
system is decoupled for analysis (Section 4.1) or for a nonlinear analysis. The
calculation of artificial time histories, which is based on the theory of random
processes, considers the general statistical characteristics of reasonable earth-
quakes. The amplitudes of the various frequencies are adjusted so that the
artificial earthquake’s response spectrum just envelops the specified design
response spectrum for each damping value of interest. This is the case for the
artificial time history shown in Fig. 3-17a, with its response spectra plotted as
solid lines in Fig. 3-17b. Obviously, a unique time history does not exist. In
general at least two horizontal time histories and one vertical (scaled to two-
thirds) which are statistically independent are needed for analysis. The other
horizontal and the vertical time histories used for practical applications in this
text are not shown.

This motion of 30-s duration can be digitized at increments At = 0.01 s.
If 4096 points are selected, about 10 s of zero motion can be added. The highest
frequency contained in the motion equals 50 Hz (Eq. 2.19). Its contribution is,
however, not accurately reproduced.

This procedure is consistent with today’s state of knowledge, contributing
to a design criterium which is insensitive to the exact values of parameters diffi-
cult to estimate. It is to be expected that in the future, sufficiently reliable earth-
quake records which fit the situation encountered will be available, eliminating
the need of using artificial earthquakes.

As discussed in Section 6.1, the actual design motion is not sufficient to
define the seismic loading case. In addition, the location (i.e., the control point)
in which the motion acts and the wave pattern have to be specified. It is also
worth mentioning that seismic design criteria will also address other aspects
(e.g., damping ratios, methods of analysis, etc.).

3.4 INTRODUCTORY EXAMPLE
3.4.1 Statement of Problem

The different aspects of considering soil-structure interaction in the seismic
analysis are discussed qualitatively in Chapter 1 (Fig. 1-2). The following
examination is restricted to the actual interaction analysis illustrated in Fig. 1-4.
For a surface structure excited by vertically incident waves, only the inertial
interaction part of the analysis really has to be analyzed (Fig. 3-10). The latter
can be examined qualitatively for a horizontal excitation with an amplitude U,
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Figure 3-18 Model with one dynamic degree of freedom.

of frequency , based on the simple model shown in Fig. 3-18. The structure is
modeled with a mass m, a lateral stiffness with a spring coefficient &, and a
damper with a coefficient ¢, which are connected to a rigid bar of height 4. This
is the straightforward structural model of a single-story building frame or of a
bridge whose girder can be regarded as rigid longitudinally compared to the
(hinged) columns (Fig. 3-19). The values m, k, ¢, and % as well as a characteristic
length a of the rigid base are easily determined. In addition, the idealized struc-
ture can also be interpreted as the model for a multistory structure which
responds essentially in the fixed-base condition as if it were a single-degree-of-
freedom system. The effective values m, k, and c¢ are associated with the funda-
mental mode of vibration of the structure built in at its base; 4 is the distance
from the base to the centroid of the inertial forces. Methods to calculate these
values are specified in Chapter 4 (see Problem 4.5). The fixed-base frequency
of the structure is denoted as w,; { represents the hysteretic damping ratio of
the structure.

k
2
;= (3.33)
_ 2%
¢c=" (3.34)

The damping coefficient c is thus frequency dependent. At the other end of
the bar, at the base, the soil’s dynamic stiffness is attached. The latter consists
of a spring and, as energy is radiated and dissipated in the soil, of a damper.
The corresponding coefficients are denoted as &, and ¢, in the horizontal direc-
tion and as k, and ¢, in the rotational (rocking) direction. No mass exists at the
base of the structure. In the lower part of Fig. 3-18, the mechanism of the
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dynamic stiffness is shown in detail. All springs and dampers have a length
approaching zero. Although the system has three degrees of freedom, the total
Iateral displacements of the mass with amplitude #*, of the basemat with ampli-
tude «, and the rocking amplitude @, only one of them is dynamic, as there is
only one mass. This is the same number as that of the structure built in at its
base (i.e., not considering soil-structure interaction). The model shown in Fig.
3-18 is thus well suited to identify the key parameters affecting soil-structure
interaction and to study their effects. It is advantageous to split the total dis-
placement amplitudes into their components

w=u,+u,+hdp+u (3.35a)
Uy, =u, + u, (3.35b)

where u, is the amplitude of the base relative to the free-field motion denoted
as u, (g for ground) and u represents the amplitude of the relative displacement
of the mass referred to a moving frame of reference attached to the rigid base
and which is equal to the structural distorsion (Fig. 3-18).
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The modeling of the soil is treated rigorously in Chapter 7. At this stage,
approximations are introduced, which nevertheless lead to valuable engineering-
type procedures. The horizontal-force amplitude of the soil P, is formulated as

P, = ku, + c,u, (3.36)

where, as will be shown later on (Section 5.1), k, and ¢, depend on the frequency
of excitation w. As discussed in connection with Eq. 3.4, only the motion of the
base relative to that of the ground results in forces. For a soil without material
damping, the corresponding equation is written as

P, =ku,+ c,, (3.37)

where the subscript x denotes the horizontal direction for a purely elastic soil.
For a harmonic excitation

U, = iou, (3.38)
applies. Substituting Eq. 3.38 in Eq. 3.37 leads to
P, = kx(l + z'coli—")uo — k(1 + 2.i)u, (3.39)

where {, represents the ratio of the viscous radiation damping in the horizontal
direction

= D¢
(=g (3.40)

The material damping of the soil is introduced, in an approximate manner, by

multiplying the spring coefficient &, (for frequency w) with the factor (1 + 2{,i),
where {, is the hysteretic damping ratio. This results in

Ph = kx(l + 2Cxl + 2Cgi)ua (341)

where the subscript / is used again, as a damped soil is addressed. Comparing
Eq. 3.41 with Eq. 3.36 and using Eqs. 3.38 and 3.40,

Ky — k., (3.42a)
¢ —c, + %cgk,, (3.42b)

follow. Assuming the structure to be rigid (kK = o) and that the foundation
cannot rock (k, = o0), the corresponding natural frequency w, is specified by

w? = % (3.43)

Analogously, for the rocking degree of freedom, the moment amplitude of the
soil M, is formulated as

M, = k¢ + c,b = k(1 + 20,0 + 20,D) (3.44)

The subscript ¢ denotes the rocking direction of the undamped soil. The ratio
{, of the viscous radiation damping of the elastic soil in the rocking direction is
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defined as
=2 (3.45)
Equations 3.44 and 3.45 lead to
k, =k, (3.46a)
¢, = ¢y + 2 Lky (3.46b)

Similarly, for a rigid structure (k = oo) whose foundation is only allowed to
rock (k, = oo), the natural frequency w, follows from

w? = K (3.47)

T mk?
3.4.2 Equations of Motion of Coupled System

The equations of motion for this structure with a rigid basemat can be
established either by applying Eq. 3.20 or Eq. 3.32 or, starting from scratch, by
formulating the dynamic equilibrium of the mass point and the horizontal and
rotational equilibrium equations of the total system (Fig. 3-18). Using Egs. 3.41,
3.42a, 3.44, and 3.46a leads to

—mw*u + uy + hd) + k(1 + 2Liu = mwu, (3.48a)
—mo*(u + u, + hd) + k(1 + 28,0 + 20,0)u, = moy, (3.48b)
—mho*(u + uy + hd) + k(1 + 2{,;i + 2(,i)p = mho*u, (3.48¢)

Dividing Eqs. 3.48a and b by mw?, Eq. 3.48c by mhw?® and using Egs. 3.33,
3.43, and 3.47 results in the following symmetric equations of motion of the
coupled system:

2)_12(1+2ci)—1 —1 —1
1 9 ariary 1] 1
- :az( -+ Cxl—l" Cxl)_ ! -

—! | i 9 4o+ 2 — 1

: - ! @ ot + 20,0) —
u 1

(u, y={1)u, (3.49)

ml |1

For a specified w with the corresponding u,, the response determined from
solving this equation depends on w,, w,, ®,, {, {,, {,, and {,. It is worth pointing
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out that (even for constant spring and damping coefficients) {, (Eq. 3.40) and {,
(Eq. 3.45) depend on o.
Eliminating u, and A¢ from Eq. 3.49 leads to

@ 142
uo = A T T o (3.50a)
hg =% 1+, (3.50b)

w?f 1 + 204 + 20,0
u is expressed as

o @ L2l et 142\ o
(12— WA TF 2001 2 w31+2c¢i+2c,i) =gt (33D

s
3.4.3 Equivalent One-Degree-of-Freedom System

To gain further physical insight, an equivalent one-degree-of-freedom
system is introduced. Its properties (natural frequency @, ratio of hysteretic
damping {) are selected such that when excited by the replacement excitation
i1,, essentially the same response u results as for the coupled system described by
Eq. 3.51. A tilde (~) is used to denote the properties of this replacement oscil-
lator. For harmonic motion, the equation of motion of the equivalent one-
degree-of-freedom system is equal to

) (—mw? + io¢ + bu = mwi, (3.52)
or wit
~  k
@ = (3.53)
¢ = % (3.54)
~ 2 2
(1 + 28— c%)u =23, (3.55)

results. Note that the mass m is the same in the two dynamic systems.

The equivalent frequency @ is determined by noting that in an undamped
system, the response is infinite at this natural frequency. Setting the coefficient
of u equal to zero with { = {, = {, = {, = 0 and with w = & in Eq. 3.51 leads
to

1
d")2

or substituting Egs. 3.33, 3.43, and 3.47 yields

1,1, 1
o (3.56)

2 COZ'
O =TTk, T FFTR, (3.57)

~

It follows that the fundamental frequency & of the soil-structure system is
always smaller than the fixed-based frequency of the structure w,.
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To establish the equivalent damping ratio Z, products of {, {,, {4, and {,
are neglected compared to unity. This operation transforms Eq. 3.51 to

2 2
[1 + 24— 2~ %(1 T 2Li — 20,0 — 20,0)

s

2 2

— %(1 2L — 20,0 — 2(;)}4 - %u, (3.58)
Substituting Eq. 3.56 into the left-hand side of Eq. 3.55, the corresponding
relationship for the equivalent system results:

. 0! o w? .

(1 + 2:1 — a)—? — _QT% — -a;?)u = gzug (3.59)

Equating the left-hand sides of Eqs. 3.58 and 3.59 (which have the same real
parts) leads to

T R N I I
z - C(l o} cof) + C"Q)}l + C¢w3 + Cz<w%l + w%) (3.60)

For resonance, @ = @, this equation can be further simplified, using Eq.
3.56, to read

= 52 2 2 2
=S+ (1-2)n+ S+ % (36

The equivalent damping ratio { is evaluated at resonance and then used over
the whole range of frequency. For consistency {, and {, should also be evaluated
for @ = @. The four different parts contributing to { are clearly separated in
this equation. If no radiation damping occurs in the horizontal and rocking
directions ({, = {, = 0) and if the material-damping ratio of the structure is
equal to that of the soil ({ = {,), ¢ = { results, as is to be expected. As under
normal circumstances {, will not be smaller than {, the equivalent damping ratio
¢ will, even in the absence of radiation damping, be somewhat larger than the
damping ratio { of the structure, which would apply if soil-structure interaction
were not taken into account. An alternative derivation based on energy consid-
erations is addressed in Problem 3.10.

Finally, comparing the right-hand sides of Egs. 3.51 and 3.55, it follows
that

2
i, = Z)_’zs u, (3.62)

The equivalent effective seismic input %, will thus always be smaller than u,.

Summarizing, the seismic response of the coupled system shown in Fig.
3-18 is, from a practical point of view, the same as that of the equivalent one-
degree-of-freedom system resting on rigid ground. This replacement oscillator
is defined by the natural frequency & (Eq. 3.57) and by the hysteretic-damping
ratio { (Eq. 3.61) and is subjected to an effective ground-displacement amplitude
1, (Eq. 3.62). The displacement amplitude « of this equivalent system is equal to
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that of the structural distortion. The corresponding transverse-shear force in
the structure equals k| u|. Alternatively, the pseudo-acceleration of the equivalent
oscillator (&, {) can be calculated based on the original seismic input u,, resulting
in @?|u|(w?/@?). (The last factor reflects the different seismic excitation to be
applied.) Multiplying this value with m leads to m|u|w? == k|u|, which is of
course again the transverse-shear force. This represents a simple procedure
applicable to design which takes soil-structure interaction into account. The
amplitudes of the horizontal displacement of the base u, relative to the free-
field motion and of the rotation ¢ follow from Eq. 3.50. Again, neglecting squares
of damping terms compared to unity results in

2
u, = %%(1 20 — 20,0 — 28,)u (3.63a)
2
h¢ = 2’75(1 4+ 200 — 240 — 2L i)u (3.63b)
1 1 1 200 28,
U+ u, - hp — w (W L2 — cg)z(gz _ 6.2) — _a%l _ é«%i)u (3.63c)
The last equation describes the motion of the mass point relative to that of the

free field. It has to be calculated to design, for example, the gap between neigh-
boring buildings or the movement of a bridge abutment.

3.4.4 Dimensionless Parameters

For a specific excitation, the response of the dynamic system will depend
on the properties of the structure compared to those of the soil. For the model
illustrated in Fig. 3-18, the following dimensionless parameters are introduced:

1. The ratio of the stiffness of the structure to that of the soil:

F— “;s” (3.64a)

where ¢, is the shear-wave velocity of the soil. As for certain tall buildings
@, is approximately inversely proportional to 4, w,/ will be constant for
this type of structure. For decreasing stiffness of the soil, § increases.

2. The slenderness ratio
;. — h
A= (3.64b)

where a represents a characteristic length of the rigid base (e.g., the radius
for a circular basemat).

3. The mass ratio

o= ﬁ (3.64¢)

where p represents the mass density of the soil (shear modulus G = pc?).
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4. Poisson’s ratio v of the soil.
5. Hysteretic-damping ratios of the structure { and of the soil {,.

To introduce the frequency of the excitation w, the ratio w/w, is defined.

These dimensionless parameters are sufficient to characterize the response
of the structure founded on a half-space. The methods discussed in Section 7.2
allow the corresponding coefficients of the soil k;, c;, k,, and ¢, to be calculated,
which depend on the frequency of excitation. As a crude approximation, the
following expressions, which are frequency independent, are used for the
undamped soil.

_ 8Ga

k=52l (3.652)
4.6 2

Cx =5 PCsa (3.65b)
_ 8aGa?

¢ =122 pe,at (3.65d)

The values k, and k, are the static-stiffness coeflicients for a rigid circular base-
mat of radius a. Expressmg the properties @ and ¢ of the replacement oscillator
(Egs. 3.57 and 3.61) in terms of the dimensionless parameters leads to

@ 1
w: 1+ __[2 —v. 31 — v)] (3.66a) -
{= %C (1 _ %)g, i % Sﬁ’"[o 03 ] (3.66b)

3.4.5 Parametric Study

As expected, decreasing the stiffness of the soil (5 increases) results in a
decreasing of @/w,. Augmenting the mass of the structure also leads to smaller
values of @/w,. The ratio @/w, can be regarded as characterizing the effect of
soil-structure interaction. The latter is thus important for stiff structures with
a large mass supported on flexible soil. In Fig. 3-20, &/w, and { are plotted as
a function of 5, varying the slenderness ratio 4. The other parameters are spec-
ified in the caption. For squat structures (4 small), whose mode shapes of the
structure-soil system will predominantly consist of a translation, { is larger
than for slender structures (% large), where the rocking motion is of paramount
importance. In Fig. 3-21, the mass ratio  is varied. The variables correspond
to a typical reactor building of a nuclear-power plant. Extreme cases are also
included to emphasize the effects.

As will be explained in depth in further sections (Sections 5.1, 7.3, and 7.4),
for certain sites no radiation damping exists below a specific frequency. In this
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Figure 3-20 Properties of equivalent one-degree-of-freedom system (m = 3,
v = 0.33, { = 0.025, {, = 0.05), varying slenderness ratio. (a) Natural fre-
quency; (b) damping.
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Figure 3-21 Properties of equivalent one-degree-of-freedom system (& = 1,
v =0.33, { = 0.025, {, = 0.05), varying mass ratio. (a) Natural frequency;
(b) damping.

case, only the first two terms involving the material dampings are present in
Eq. 3.66b. The corresponding effective damping ratio ¢ is also shown in Figs.
3-20 and 3-21.

Although for the equivalent oscillator the damping ratio Zis generally
larger than { and the effective seismic input i, smaller than u,, the structural
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response u for a specific @ can be larger or smaller than if soil-structure interac-
tion is neglected. The latter follows from Eq. 3.55 for a stiffness ratio § =0
(soil rigid, ¢, = o0), that is, replacing ¢ by , @ by w,, and @, by u,. If only the
peak response is examined, which occurs at the natural frequency of the corre-
sponding dynamic system (@ = @, @ = ®,), then that which takes soil-structure
interaction into account [= (ug/ZZ)(cZ’)z/a)ﬁ)] is practically always smaller than
that for the same structure on rigid soil (= u,/2{). In Fig. 3-22a, the absolute
value of the structural distortion || (nondimensionalized with u,) is plotted
for § =1 and § = 0 as a function of the dimensionless excitation frequency
/w,. The parameters are again listed in the caption. In addition, selected values,

lul

lugl
20
a)
15
10 -
5..
(O]
0 o w
0 02 04 08 08 1.0 12 14 0
lu+ug+hol
lugl
A
20
b)
15 4
10 4
5_
0 o
0 02 04 06 08 10 12 14 s

Figure 3-22_ Influence of soil-structure interaction as a function of excitation
frequency (h = 1, m = 3, v = 0.33, { = 0.025, {, = 0.05). (a) Structural distor-
tion; (b) displacement of mass relative to free field.
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shown as dots, are plotted, determined from solving the coupled system (Eq.
3.49). The agreement with the results of the equivalent one-degree-of-freedom
system is excellent. The absolute value of the displacement amplitude of the mass
point relative to the free-field motion |« + u, - ¢ | (Eq. 3.63c) is plotted for
the same parameters in Fig. 3-22b. Taking soil-structure interaction into account
again reduces the peak response, although to a lesser extent. Disregarding soil—
structure interaction, u, = ¢ = 0. Obviously, the interaction effect is negligible
for very small and very large ratios of w/w,. The motion at the base is examined
in Problem 3.6.

Finally, the artificial time history described in Section 3.3 (Fig. 3-17a) is
applied, normalized to 0.1 g. Its corresponding response spectrum closely follows
the U.S. NRC Regulatory Guide 1.60. The maxima of the structural distortion
Umex and of the displacement of the mass point relative to the free-field motion
(4 + 4, + "), are plotted as a function of the stiffness ratio § in Fig. 3-23a
and b, respectively. The fixed-base frequency of the structure is varied. In
contrast to the peak response for the harmonic motion, (¥ + 4, + A¢)mux
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Figure 3-23 Maximum response, artificial time history (A = 1, m = 3, v = 0.33,
{ = 0.025, {; = 0.05), varying fixed-base frequency. (a) Structural distortion;
(b) displacement of mass relative to free field.
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increases for (sufficiently large) increasing §. The structural distortion ty,,
always decreases, when taking soil-structure interaction into account.

It is worth mentioning that the equation of motion of the equivalent one-
degree-of-freedom system can also be solved directly in the time domain. Using
frequency-independent spring and damping coefficients and assuming the damp-
ing whose ratio is { to be viscous, the following differential equation results:

7o 2@ + @ — —g—:i’g (3.67)

The structural distortion as a function of time and the prescribed acceleration
time history are denoted as r and 7,, respectively. See Problem 3.13 for an
application.

An even simpler model can be selected to analyze the vertical earthquake
excitation (see Problems 3.7, 3.8, and 3.9).

SUMMARY

1. By merging the two substructures, the actual structure and the soil with
excavation, the basic equation of motion in the frequency domain is derived.
The amplitudes of the total displacements are associated with nodes within
the structure and on the structure-soil interface.

2. The corresponding coefficient matrix is formed by assembling the dynamic-
stiffness matrices of the discretized structure and of the unbounded soil
with excavation with degrees of freedom along the structure-soil interface
(base). For a rigid base, the compatibility constraints are incorporated into
the dynamic-stiffness matrices.

3. The corresponding load vector equals the product of the dynamic-stiffness
matrix of the soil (free field) and the free-field-motion vector, both deter-
mined only in those nodes which subsequently will lie on the structure-soil
interface. The earthquake excitation in other points of the free field is thus
not required. The nodes of the structure not in contact with the soil are
unloaded. Also for a structure with a rigid base, the load vector depends on
this free-field motion. No need to determine the seismic-input motion of any
other reference soil system exists.

4. The discretized system consists of the structure, and in the embedded region,
of the difference of the structure and of the soil, and is supported on a
generalized spring characterized by the dynamic-stiffness matrix of the soil
(free field). That end of this spring not connected to the structure is excited
by the free-field motion in those nodes which subsequently will lie on the
structure-soil interface.

5. The basic equation expressed in total motion results in a simple procedure
which can be used to calculate the most general case of soil-structure
interaction straightforwardly and economically.
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6.

10.

11.

12,

13

14.

Alternatively, the load vector can also be determined as the product of the
dynamic-stiffness matrix of the soil with excavation and the vector of the
corresponding scattered seismic-input motion.

The total motion can be split up inte that arising from kinematic and that
from inertial interactions. An analysis with the same load vector as in the
basic equation of motion and omitting the mass of the structure results in
the kinematic motion. The latter forms the seismic acceleration which, when
multiplied by the mass of the structure, leads to the inertial loads (acting
in all nodes of the structure) of the inertial interaction. The coefficient
matrix of the inertial interaction is the same as that of the basic equation of
motion.

For a surface structure excited by vertically incident waves, the kinematic
motion equals that of the free field. The corresponding acceleration (con-
stant throughout the structure) multiplied by the mass of the structure leads
to the loads of the inertial interaction.

For a general configuration with a flexible base, determining the kinematic
motion is as complicated as calculating the total motion directly from the
basic equation of motion and should thus not be performed.

For a rigid base, the kinematic motion at the base equals the scattered
motion of the soil with excavation, whereby the compatibility constraints
are enforced. Even when an embedded structure is subjected only to verti-
cally incident waves, rotational components arise. The kinematic motion
throughout the structure (and thus also the loads for the inertial interaction)
follow from rigid-body kinematics. As the physical insight gained by splitting
the procedure into two steps can be valuable, a viable alternative to solving
the basic equation in total motion exists for a rigid base.

Unbalanced mass in rotating machines will lead to periodic loading which
is characterized by the Fourier amplitudes of the first and higher harmonics.

The soft-missile impact on a rigid target results in a short-duration non-
periodic load which depends on the initial velocity of the missile and on the
distribution of its mass and of its buckling load.

The design motion for earthquake excitation is specified as a design-response
spectrum determined from a shape intended for general application and an
anchor value. A corresponding artificial time history can be calculated
whose response spectrum closely follows the design-response spectrum for
the damping values of interest.

A simple system consisting of a vertical rigid bar with the translational and
rocking springs and dashpots representing the soil attached at one end and
at the other one, at a distance equal to the height, a spring and a dashpot
connected to a mass, which models the structure, correctly captures the
essential effects of soil-structure interaction.
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The response of this system for a prescribed horizontal seismic excitation
with a specified frequency is a function of the fixed-base frequency of the
structure, of the frequencies for a rigid structure assuming in addition that
either the rocking or the translational spring is rigid, the ratios for the
viscous radiation damping in the horizontal and rocking directions and the
ratios of the hysteretic damping of the structure and of the soil.

The coupled system can be replaced by an equivalent one-degree-of-freedom
system. Its natural frequency, which is a function of the three frequencies
defined above, is always smaller than the fixed-base frequency of the struc-
ture. Its damping ratio, which can be calculated by adding the contributions
of the four damping ratios introduced above, will, in general, be larger than
the hysteretic damping ratio of the structure. Its effective support motion
will be smaller than that of the fixed-base structure, the factor being equal
to the square of the ratio of the equivalent natural frequency to the fixed-
base frequency.

The response is a function of the ratio of the stiffness of the structure to
that of the soil, of the slenderness ratio, of the ratio of the mass of the struc-
ture to that of the soil, of Poisson’s ratio of the soil, and of the ratios of
hysteretic damping of the structure and of the soil.

Taking soil-structure interaction into account will reduce the peak structural
distortion for harmonic excitation, while for a specific frequency of the
excitation the result can be either smaller or larger than that of the
fixed-base structure.

For an artificial earthquake time history, taking soil-structure interaction
into account, will, in general, reduce the maximum structural distortion,
while the maximum displacement of the structure relative to the free-field
motion can be increased.

PROBLEMS

3.1. A mass m is supported by two massless truss bars of length /, modulus of elas-

ticity E, area 4, and damping ratio {, which are connected to a rigid massless
basemat. This surface structure is shown in Fig. P3-1a. The dynamic-stiffness
coefficients of the soil are denoted as S%, %, and S¢ in the horizontal, vertical,
and rotational directions, respectively. The scattered motion (which is assumed
to be specified) consists of the translational components with the amplitudes
uf and w8 and of a rotation with the amplitude f%. Using the nomenclature
indicated in Fig. P3-1a, formulate the equations of motion in total displacements
(amplitudes with superscript ¢, Eq. 3.20) and in kinematic and inertial displace-
ments (amplitudes with superscripts k and i, Egs. 3.29 and 3.32).
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Figure P3-1 Mass supported by two truss bars on rigid basemat. (a) Structural
system; (b) inclined bar; (c) rigid basemat.

Solution:

The dynamic-stiffness matrix (relating the amplitudes of the displacements «,
wt, «, and w} to those of the loads) of the massless damped bar in Fig. P3-1b
is equal to

1 /3 1 ;

4 7 i 4

~3 3 M3 3

] 7 T 71

Eda v a0

1 v/3 1 3

7 Z 7 ]

V3 3 /33
T 3 3 F

The kinematic-transformation matrix [A4] of the rigid basemat follows from
Eq. 3.13 as (Fig. P3-1¢)

uw 1

us

t i
wl == ] 2 wt
u, 1 0
2 ¢t

1

wh 1 —3

The matrices [S,,] and [S$,] associated with the structure are calculated using
Egs. 3.16a and 3.16b, whereby in [S};] the contribution of both bars is present.
Adding the effect of the mass and of the soil, the equations of motion in total-
displacement amplitudes are equal to (Eq. 3.20):



54 Basic Equation of Motion Chap. 3
—2m
—wim
( SE
S2
St
-1 _1 3 (e
2 2 4
3 _3 ”
2 2
EA ; 1 1 /31
+ T(l + 240) -5 >3 4 us ) = ¢ )
.__% % wz Sg ug
Vel } e | e
4 4 8 ¢ SHILY 7

3.2.

The kinematic displacement amplitudes follow from Eq. 3.29 as

uk 1 w3

wk 1 uf
uk > =11 wi
wk 1 B

b* 1
The inertial-displacement amplitudes are determined using Eq. 3.32. The coef-

ficient matrix of the left-hand side is the same as that in the case of total dis-
placements but with the unknowns uf, ', u,, w!, and ¢". The right-hand side

equals
_ _ \ _ / _
m u* m -%im
wk ué
m
w? uk y = @? wi
wk B
¢k
— — 7 — I

The derivation of the basic equation of motion (Eq. 3.9) is based on substructur-
ing with replacement. Adding the excavated part of the soil (the reference system
e) to the irregular substructure of the soil with excavation (system g) results in
a reference system with regular geometry, the free field f (Fig. 3-3). The latter’s
response to the seismic excitation {uf} is relatively easy to calculate, as will be
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shown in Chapter 6. The same applies to the dynamic-stiffness matrix [Sf,]
(Section 7.5). The load vector of the basic equation of motion is a function of
the free-field reference system only.

This concept can be illustrated by solving the following simple static prob-
lem, whereby the loading is not a prescribed motion, but an exterior load. One
span of a continuous beam with infinitely many spans of equal length /is loaded
with an evenly distributed load p (Fig. P3-2). All spans have the same moment
of inertia I with the exception of one of the spans adjacent to the loaded one,
where it is denoted as I,. The modulus of elasticity is E. Determine the moment
distribution along this span, taking only the work of the moments into account.
For the numerical calculation choose I, = 21.

PO,
I ] A g

0 <« —x ya) Pay
: t !

o)

| l l l

—» 00

1 @
>

Figure P3-2 Continuous beam with infinitely many spans with one span having
a different moment of inertia.

Hints:

The span A-B represents one of the substructures (denoted as s), the beams to
the left of 4 and to the right of B, the other substructure being g. Replacing the
span A-B with I, by one with a moment of inertia I, the free-field system f results,
which is a continuous beam with infinitely many identical spans, whose response
is tabulated. In particular, the rotations at 4 and B for the distributed load
follow, which correspond to the free-field response {uf}. The moment that leads
to a unit rotation at the end of the continuous beam with infinitely many identical
spans is equal to the two elements of the diagonal matrix of the stiffness matrix
[S&]. After adding to [S§,] the full 2 X 2 stiffness matrix of the span 4-B with /
(system e), i.e., [S§,), one obtains [Sf,].

Results:
4EIIS 21511, 3.46511
[S5,] = [S8)] =
2Bl 4EL 3.46EL
T 4T ]
- EI .EI
o 4EL o
[ bbd T ZEI 421—
T 4T
—7.46571 2§l—’
[S£,1=1[S8] + [Sg,] =
2EL 7465

I T
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2
" 0.0152/ ¢
ul} =
_ pl?
0.0041 %
(@S35 -+ [SED{ug} = [SE)uf}
with
I, =21
pl3
" 0.0105%F
iy =
_ pl?
0.0037 %7
2
M, = -—0.54’%
pl*

3.3. In a multistory building the vibrations at the top floor arising from periodic
loads from a machine installed at another floor are unacceptably strong for the
employees (Fig. P3-3). To reduce the dynamic response, a tuned-mass absorber
consisting of a mass m, of a spring with a constant &, and of a damper with a
constant ¢ is installed at this top floor. Derive the equations of motion using
substructure concepts.

ul

k
b, MN\,OE,
©
m

Figure P3-3 Structure excited by periodic load from machine with tuned-mass
absorber.

Solution:

To establish the coupled equations of motion, the original structure without the
absorber can be regarded as the free-field reference system f. Assuming, the
columns to be inextensional and lumping the mass of the structure on the level
of the floors, the dynamic degrees of freedom of the (two-dimensional) structure
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34.

are equal to the lateral displacements of the floors. The base of the structure is
assumed to be fixed. The equations of motion (in the frequency domain) of the

_original structure, including the loads from the machine, can easily be formulated

(Section 4.3). The corresponding displacement amplitudes at the top floor of
the free field uf then follow. Applying a harmonic load of unit amplitude at the
top floor and calculating the inverse of the displacement amplitude at the same
location leads to the dynamic-stiffness coefficient S,. In actual practice, uf will
often be measured and also Sf, will be determined experimentally with an
eccentric vibrator varying the frequency to cover the range of interest. As the
original structure is also one of the two substructures g, §§ = § {,. The other
substructure consists of the absorber mechanism. The equations of motion of the
coupled system then follow from Eq. 3.9 as

k +iwe — wmi  —k — ioc u 0
[ —k —iwe |k + ioc + S{J{u;,} {S{bu{}

If certain approximations are introduced, the method of substructuring with
replacement can also be used to establish the differential equations of motion
in the time domain. This is, for example, the case for a vertical pile supported
on a Winkler type of foundation, that is, on individual springs whose coefficients
k(z) (per unit length) depend on the soil properties and on the radius a of the
pile (Fig. P3-4). The seismic excitation of the free field consists of a vertically
propagating shear wave with a horizontal displacement r/(z, ¢). The modulus of
elasticity, the mass density, the area, and the moment of inertia are denoted as
E, p, A, and I, respectively. The subscripts p and g are used to indicate the
properties of the pile and of the soil, respectively. Derive the differential equa-
tion of motion, neglecting all damping terms, which is equal to

EIrt,... + ppAFt + ket = krf + EJIr] ..., + pAFS

Y 4

AN 1——’1 g
NAN rt
NAAAA | Ep Eq
NAAANA P Pq
NAAAA
NAAL =

k rf

Figure P3-4 Pile supported on individual springs.

Solution:

The first two terms and the third one on the left-hand side correspond to the
contributions of the pile [the “structure”(s)] and of the ground with excavation
(system g), respectively, that is, of the two substructures. The right-hand side
represents the product of the dynamic stiffness of the free field and its motion.
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The last two terms on the right-hand side correspond to the contribution of the
excavated soil, that is, the pile replaced by soil (system e). Introducing the wave
equation of the soil (which is derived in Section 5.1 for harmonic excitation),

1

rf = Fr

s 2Z

the right-hand side can be rewritten, resulting in

Epl¥teves + ppAit + k' = k! + poart + Ealyr
5
The shear-wave velocity of the soil is denoted as c,.

This example is only used to illustrate the method of substructuring with
replacement. The influence of the last two terms on the right-hand side will, in
general, be smaller than that of selecting isolated springs to model the soil, thus
neglecting the coupling and damping effects.

Assume that the model of a structure consists of separate “sticks” (branches),
which are not connected to each other and which are attached to the flexible
base in one node only, this node in general being different for each stick. The
stick could be a beam. Show that for such an embedded structure the motion of
the kinematic interaction of the base {1} is equal to that of the scattered motion

{ut}.

Solution:

The amplitudes {#*} of each stick can be eliminated independently of those of
the other sticks (Eq. 3.23). The equilibrium equations of each stick result in

[Kgb] - [Kb:][Kss]‘I[K:b] =0
Equation 3.25 leads to

[SE1{ub} = [SENut}
that is, {#%} = (u§}.

For the coupled system used to analyze the horizontal excitation and which is
examined in Section 3.4 (Fig. 3-18), plot the absolute value of the total-displace-
ment amplitude of the base (nondimensionalized with {u, ]), |u, + u,|/|u,| versus
the ratio of the excitation frequency to that of the fixed base w/w,. Use the
same parameters as in Fig. 3-22: 5§ = 1, h=1,m=3,v =033 {=0025and
{, = 0.05. For the range of frequencies where |u, -+ u,|/|u,|is larger than 1, the
motion of the base with soil-structure interaction is larger than without. The
curve exhibits a maximum and a minimum. Verify that the maximum and mini-
mum occur approximately at @/@, and at ®,/s/®? + w?, respectively. The
latter expression represents the natural frequency of the system with a rigid
horizontal soil spring, divided by @, (Eq. 3.56 with 1/w? = 0).

Results:

Solving the equations of motion (Eq. 3.49) for 4, the results plotted in Fig. P3-6
follow. Those based on examining the equivalent one-degree-of-freedom system
(Eqgs. 3.63a and 3.55) are very similar.
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Figure P3-6_ Total horizontal displacement at base as a function of excitation
frequency (h = 1, m = 3, v = 0.33, { = 0.025, {; = 0.05).

3.7. Analogously, as described in Section 3.4 for the horizontal excitation, the (even
simpler) system shown in Fig. P3-7 can be used to analyze the vertical one with
amplitude w,. Two degrees of freedom, the amplitudes of the total vertical dis-
placements of the mass w* and of the massless base w¢, are introduced, whereby
only one of them is dynamic. Derive the equations of motion using as unknowns
the amplitudes of the relative displacements w and w, and establish the prop-
erties of the equivalent one-degree-of-freedom system.

Figure P3-7 Model with one dynamic degree of freedom (vertical).

Solution:
w=w, +w,+w
wh=wg + W,

The vertical-force amplitude of the damped soil P, is formulated as
P, =kw, + W,
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where, as an approximation, the vertical-spring coefficient k, is equal to that of
the undamped case k,. Defining the viscous-radiation damping ratio in the
vertical direction {, of the undamped soil as

wc
Cz = 2k

where ¢, is the corresponding damping coefficient of the elastic soil and introduc-
ing the material damping {, as

2
Cy = C; + ECgkz
leads to
Pv = kz(l + 2Czl + 2Cgi)wo

The following symmetric equations of motion result:

1
(02(1 + 20D — li -1 w 1
: = We
—1 |2 L1+ 2L+ 2,0 — 1 ||w, 1
where
wﬁﬁlﬁ
m

and @, and { are the fixed-base frequency and hysteretic-damping ratio of the
structure, respectively.

The natural frequency @, the ratio of hysteretlc damping C and the replace-
ment excitation W, of the approximate equivalent one-degree-of-freedom system
are equal to

1 1 1

W:?+@
d) (’[)2 662 52
@2

W, =->w
g zWe
w5

In the derivation of the properties of the equivalent one-degree-of-freedom sys-
tem, it is assumed that products of the damping ratios can be neglected compared
to unity. As the radiation damping is much larger in the vertical direction than
for the other degrees of freedom, this assumption is questionable and introduces
restrictions when using these formulas. See Problem 3.8 for an evaluation.

For the equivalent one-degree-of-freedom system for vertical excitation derived
in connection with Fig. P3-7, the following dimensionless parameters can be
defined:

1. The stiffness ratio of the structure and of the soil

w.a
Cs

§ =
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2. The mass ratio
_ m
m=—3
pa’
3. Poisson’s ratio v of the soil

4. The hysteretic-damping ratios of the structure { and of the soil {,

As a crude approximation, the following (frequency-independent) formulas
for the spring and damping coefficients can be used for a rigid circular basemat

of radius a:
4G

ke =1—

4 s
€ =7 —Pcsa

Express the equivalent properties of the one-degree-of-freedom system @2/}
and { (see_Problem 3.7) as a function of the dimensionless parameters. Plot
@/, and { as a function of § (in the range from 0.1 to 10) for 2 = 3, selecting
v = 0.33, { = 0.025, and {, = 0.05. Also calculate the curve for {, neglecting
the influence of radiation damping. Compare the results with those shown in
Fig. 3-20b for a small value of the slenderness ratio f. Note that the radiation
damping in the vertical direction is larger than that in the horizontal one. Derive
a more accurate expression for @ and { (which is also more complicated) by
equating the real and imaginary parts of the equation for w of the coupled system
with those of the equivalent one-degree-of-freedom system.

Results:
1

—_—
N ()

g @ ®? @ 5
(=5t + (-2 5s)
plotted in Fig. P3-8 as solid lines. The equation of motion for w of the coupled

system equals

0wl 440, + 4L, w? =20 + 20, + 20,7, _ @?
(1 -G w51+4(c,+cg)2+(2“w%1+4<cz+cg)2 )il =G

while that of the equivalent one-degree-of-freedom system equals

&2
w}

w2 7. w?
(1 —at 2Cz>w = 517
which results in
1 114+ 46¢ +8»

1
@ ! @l +4C + P
7 @ §+8—¢
Y T . FA. T S

S (AN
These are plotted in Fig. P3-8 as dashed lines. These more accurate results
should not be used in practice, as the direct solution of the two equations of
motion represents a simpler approach.
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Figure P3-8 Properties of equivalent one-degree-of-freedom system (vertical)
(m = 3,v = 0.33, { = 0.025, {, = 0.05). (a) Natural frequency; (b) damping.

For the coupled system analyzed in Problem 3.7, plot the absolute values of the
vertical structural distortion (nondimensionalized with |w,|), |w|/|w,| and of
the displacement amplitude of the mass relative to the free field |w + w, |/ w,|
as a function of the ratio of the excitation frequency and that of the fixed-base
frequency @w/w,. Use the spring and damping coefficients introduced in Problem
3.8. The following parameters apply: § =1, m = 3, v = 0.33, { = 0.025, and
4 ¢ = 0.05. Compare the curves for § = 1 with those for § = 0, that is, not
taking soil-structure interaction into account. For which range of w/w, does
neglecting soil-structure interaction lead to a smaller response? For the same
set of parameters, plot the absolute value of the total vertical-displacement
amplitude of the base [w, + w,|/|w,| as a function of w/®,.

Results:

Solving the two equations of motion of the coupled system leads to the results
plotted in Fig. P3-9,

An alternative derivation of the equivalent damping ratio f for the coupled sys-
tem shown in Fig. 3-18 exists. It is based on energy considerations. For hysteretic
damping, the dissipated energy (which is independent of the frequency of excita-
tion) is proportional to the product of the damping ratio and of the strain energy.
Adding the dissipated energies of the structure and of the soil in the horizontal
and rocking directions, and setting this value equal to that of the equivalent
one-degree-of-freedom system using the same total strain energy leads to the
equation

ku? kyu? k.2
s CT + & > +¢, >
- 2 2 2
ku? + LIVH 4 /&g’_

2 2
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Figure P3-9 Influence of soil-structure interaction as a function of frequency of
vertical excitation (m = 3, v = 0.33, { = 0.025, {; = 0.05). (a) Structural dis-
tortion; (b) displacement of mass relative to free field; (c) total displacement at
base.
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where {, and {, are the (hysteretic) damping ratios of the damped soil in the
horizontal and rocking directions, respectively.

Ch:Cx+Cg
Cr:C¢+Cg

Neglecting the damping terms when formulating the equilibrium equations results

mn
U, — —k—u
(4 k}l

Derive the equivalent damping ratio as specified in Eq. 3.61. Note that in this
derivation, products of damping ratios compared to unity do not have to be
formally neglected. ‘

A rigid undamped structure of mass m and moment of inertia I (with respect to
the center of mass, which is at a height 4) rests on the surface of flexible soil
(Fig. P3-11). For horizontal excitation with amplitude u,, this system has two

m I g ug ho

(

|
|
h Lo
Kh a b
Y T—‘ut ) o ad
pea— g 0 Uq Ug

2= TRR

ug u}

Figure P3-11 Rigid structure founded on flexible soil.

dynamic degrees of freedom, #, and ¢. Introducing the same approximation as
discussed in connection with Fig. 3-18, the horizontal-force amplitude P, of the
damped soil is formulated as

P, = kuu, + ey, = ky(1 + 20,0 + 20 hu,
where {, and {, are the ratios of the viscous radiation damping of the undamped

soil in the horizontal direction and of the hysteretic-material damping, respec-
tively. Analogously for the moment amplitude of the soil
M, =k +cd = k(1 + 2040 + 20,0
applies. The two equations are the same as Eqs. 3.41 and 3.44,
(a) Derive the symmetric equations of motion for harmonic response using the

unknowns u, and A¢. The coefficient matrix is a function of {,,{,,{,, o,
and I/A2m and of the frequencies w,(k, = o) and of w,(k; = o).

k
co,%-;n’l
k
2 r
@y T I+ hm
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(b) 1dentify the stiffness matrix [K] and mass matrix [M] of the system and cal-
culate the two natural frequencies @; and w, of the coupled system with the
corresponding mode shapes {¢;} and {¢,}.

(¢) Under what condition can the fundamental frequency @; be calculated
approximately using the equivalent of Eq. 3.56?

1 1 1

ol ~ o} @t

(d) The structure—soil system does, in general, not have classical modes; that is,
the transformation to modal coordinates does not decouple the damping
terms. Identify the damping matrix [C] and show that for @ = @, the off-
diagonal term of the transformed damping matrix {¢,}7[C}{¢,} does not
vanish. Determine an approximate equation for the corresponding modal-
damping ratio {; based on energy considerations, as in Problem 3.10.

Results:
OFy +oti+ 2ty — 11 1
( ) Cl?( + xI + gl) - : - U,
a 1 2
' . . I
1 2ea 4+ 2L+ 20,0 — 1 (1 + ) ||
1
= I,{g
1
ks m m
) [K] = k, [M] = I
2 momt g

with the unknowns , and Ad.
[[K] — 0iM]| =0

232
otz =4(1 + )@t + 01 5\~ Gt ot )
(K] — oHMD($) =0

Uy, Uya
w—ZI ol CO% 02
(c) Setting the approximation
) Wiw?
P "o + w7

equal to the equation specified above leads to
w? _
(1 + Pm/I)w; + @?)
which is approximately satisfied for

0

2
ot < (1 + MV wp + w?)
T
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@ [y _ 1| B 2L x4 Bk
_1 . _
@ s + 200 hl( L ks Bocks)
‘ 1 1
G .
w? w3

The off-diagonal term of [®)T[C®] equals
C ks, Wy w} {ok,
R MR NETR

The modal-damping ratio is determined on the basis of energy consideration;
'C' _ Ch(khuz/z) + C (k, ¢2/2)
! kw22 + k,$%2
Ch - Cx -+ Cg
Cr = Cqﬁ + Cg

formulating equilibrium (neglecting damping terms)

With

. hkhuo
=%

and introducing the approximation discussed in part (c) leads to
2
{=¢, + C x iC¢
I‘

3.12. The rigid structure of density p, of the shape of a triangle with a right angle
(width 25, height 8b/3) rests on the surface of flexible soil which is modeled as a
homogeneous half-plane with shear modulus G, Poisson’s ratio v, density p, and
material-damping ratio {,. This could be regarded as a simplified model of a
gravity dam supported on poor rock, whereby this two-dimensional case repre-
sents a cross section (Fig. P3-12a). As a crude approximation, the coefficients of
the springs and dashpots of the undamped half-plane of unit depth are specified as

. G
k, = 0.357:1 —
¢, = 0.72npc.b
N Gb2
ky = 0. 57:1 >
_ pe.b?
Cy = 0.19721 — 08y

To determine the dynamic-stiffness coefficients of the damped soil, the same

approximations as discussed in Problem 3.11 are introduced.

(a) Making use of the results in Problem 3.11, formulate the symmetric equa-
tions of motion for harmonic response using the relative-displacement ampli-
tudes u, and h¢ (h = 8b/9).
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Figure P3-12 Rigid structure interacting with soil. (a) Triangular structure on
half-plane; (b) total displacement at base; (c) rocking.
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(b) As the structure is modeled as a rigid body, it is not possible to evaluate the
effects of soil-structure interaction by comparing natural frequencies and
damping ratios. Plot the ratios |u, + u,|/|u,| and | A |/ u, | as a function of
wbfc, for the following parameters: v = 0.33, p,/p = 1, and {, = 0.05.

Is soil-structure initeraction important in this case ?

Results:

OF _ o4 1
@ G =041 o
@7 _ p_ct 1

> 0‘427)—,w2b2 I—v

¢, = 1.03“’71’(1 —v

_ wb 1—vy
b =019 55y

(b) For the plots, see Fig. P3-12b and c.

A structure has the following properties: effective height 4 = 20 m, effective
radius of basemat a = 20 m, effective mass m = 50 Gg, fixed-base frequency
@,/2n = 4 Hz, and material damping { = 0.05. It is built on the surface of a
half-space with Poisson’s ratio v = 0.33, a mass density p = 2.0 Mg/m?, a shear-
wave velocity ¢, = 200 m/s, and a damping ratio {, = 0.05. The design response
spectrum of the U.S. NRC applies (Fig. 3-17b). Based on the approximations
introduced in Section 3.4, calculate the ratio of the relative displacement (which
is equal to the ratio of the total accelerations) of the structure founded on the soil
described above to that of the one founded on rock. Use the response-spectrum
method.

Results:
Dimensionless parameters: § = 2.5, h = 1, m = 3.12
Equivalent one-degree-of-freedom system: aﬂ) =0.32, f =0.17

Response spectrum (Fig. 3-17b):
/21 = 4 Hz, {=005—5,=29g

@/2n = 1.3 Hz, {=017T—> 8, < 145g
Ratio < 0.5
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41 GENERAL CONSIDERATIONS

In contrast to the procedure often used in determining the static response, it is,
in general, not permissible to perform the dynamic analysis in steps, calculating
one part of the structure after the other (e.g., proceeding floorwise, starting at
the top). The total dynamic system with a correct representation of the stiffness
and the mass has to be modeled. This, however, does not mean that a very
complicated detailed model is always necessary. It is well known that many
dynamic loads excite only certain modes, mostly of low frequency. In many
cases an approximate model capturing these essential dynamic properties is
sufficient, also in view of the many uncertainties of the dynamic load, which are
normally larger than for static ones. Selecting a crude model does not mean
that the structural engineer is not familiar with sophisticated methods. Econom-
ical considerations in general also demand the use of a simple model for a
dynamic analysis, as the computational effort of the latter can be an order of
magnitude larger than that of a static analysis working with the same discretiza-
tion. Procedures to establish such models in a direct way are discussed in Section
4.3. Alternatively, a large finite-element model can be first established and then
reduced systematically by diminishing the number of dynamic degrees of
freedom. Various methods to achieve this are outlined in Section 4.4. The
structures and the applied loads vary widely, which makes modeling a difficult
task. Fewer pitfalls are encountered in modeling the structure than the soil, as
the dynamic properties of the structure are better known and the problem of
representing the radiation of energy in the unbounded domain does not exist.

69
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Lack of knowledge of the dynamic characteristics of the structure can in many
cases be compensated by the choice of a more detailed model.

4.1.1 Frequency Content and Spatial Variation
of Applied Loads

The applied loading influences the modeling of a structure significantly.
The same structure excited by loads differing in frequency content and spatial
variation has to be discretized differently. All modes with nonnegligible general-
ized modal loads in the range of frequency of the applied loading have to be
represented. This means that impact loads with a high-frequency content
demand a much finer model than the seismic excitation, for which only all modes
with frequencies smaller than 30 Hz have to be included. As will be discussed in
Section 4.2, an approximately axisymmetric surface structure (even with a
flexible base) can be modeled very simply if excited by an earthquake arising
from vertically incident waves. The complexity of the model of the same structure
excited by a horizontally propagating wave for which the motions at the base
of the structure differ from node to node increases by at least one order of magni-
tude. In both cases the frequency content of the earthquake, but not the spatial
variation, is the same.

In addition to the frequency content and spatial variation of the applied
loading, the type of result required plays an important role. If only global results
are to be determined, the dynamic model will tend, in general, to be restricted
to represent even fewer of the modes of low frequency. The shapes of the modes
of high frequency with many nodes exhibit zones of positive and negative values.
As the global values correspond to integrals of the mode shapes, the contribution
of the higher modes will be small and can thus be neglected. For instance, the
base shear of a building modeled as a vertical beam will be in equilibrium with
the inertial loads. These are proportional to the product of the mass and the
mode shape. The resultant of the inertial loads corresponding to the modes of
high frequency will thus be small. Analogously, these modes will hardly contrib-
ute to the overturning moment at the base, another global result. In contrast,
a mode of high frequency can significantly influence the local response, such as
the displacement or the acceleration at a specific location (e.g., at the top of the
structure) if the mode shape exhibits a large value at this point. Besides distin-
guishing between global and local results, it is essential to realize that modes of
high frequency contribute significantly more to the maximum total accelerations
than to the maximum relative displacements. As discussed in connection with
the tripartite representation of a response spectrum (Section 3.3.3), the pseudo
total acceleration (which is very close to the total acceleration) is equal to w?
times the relative displacement of a mode with frequency w. Obviously, w? is
larger for modes with high frequencies than for those with low frequencies.

If the motion is expected to occur essentially in a plane, a two-dimensional
model of the structure can be appropriate. This is in contrast to the modeling
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of the soil (see Section 7.4.2). Of course, results associated with the three-dimen-
sionality of the structure (e.g., the torsional response) cannot be calculated in
this way.

In many cases the base, which lies on the structure-soil interface, can be
regarded as rigid, even if the basemat itself is not necessarily rigid, as cylindrical
shells and neighboring shear walls can stiffen the base significantly. The assump-
tion of a rigid base reduces the number of degrees of freedom of the structure—
soil interface (see Sections 3.1 and 3.2) and allows a much simpler model of the
structure to be used for earthquake excitation (Section 4.2).

The selected model of the structure determines the dynamic-stiffness
matrices [S,,] and [S,;], [S};] for the flexible base and [S,,], [S5,] for the rigid base.
These matrices appear in the corresponding basic equations of motion (Egs.
3.9 and 3.15). The matrix [S] of a bounded system depends on the static-stiffness
matrix [K], the damping ratio {, and the mass matrix [M] (Eq. 3.1). The matrix
[K] depends on the (dynamic) material properties of the structure. The material-
damping ratio {, which is actually a global representation of nonlinear effects,
varies significantly with the stress level and the type of the loading.

4.1.2 Decoupling of Subsystem

The results of the crude dynamic model are in general not sufficient to
design the structure directly. For instance, the stress resultant in an equivalent
beam with a vertical axis representing all walls cut by a horizontal section
between two adjacent floors of the dynamic model is not suitable for designing
a specific portion of the wall. In most cases it will be necessary to analyze the
structural element separately, using certain results of the crude model of the
total structure-soil system (e.g., applying the maximum total acceleration as
the loading).

Similarly, a subsystem with a small mass can be decoupled from the
dynamic model. This could apply to a component fixed to the structure at one
point. This procedure is illustrated in Fig. 4-1. For a dynamic load (e.g., an
earthquake excitation specified at the surface of the free field denoted as u,,
or an impact load acting on the dome of the structure), the response u, of
the component with a static-stiffness matrix [K], a mass matrix [A,], and a
damping ratio {, is to be determined. In the figure, the matrix symbols are
deleted. In the first step, the dynamic model without the decoupled subsystem
is analyzed. The acceleration or displacement time history u, at the location
where the subsystem is in reality connected to the structure is calculated. This
motion will be influenced by the dynamic characteristics of the model of this first
step. In the second step, this motion is applied to the support of the subsystem,
resulting in its response u,. In this method, the two systems are assumed to
behave independently of one another with no feedback from the subsystem to
the dynamic model of the first step. When implementing this procedure, the
result of the first step, the time history of the motion at the support point of the
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Figure 4-1 Uncoupling of subsystem with small mass.

subsystem, denoted as u, in Fig. 4-1, is often displayed in the form of the so-
called in-structure response spectrum. This represents the maximum response
of a single-degree-of-freedom system characterized by its own natural frequency
. and damping ratio {.. This concept is discussed in connection with the design
response spectrum of the control motion in Section 3.3.3. Assuming the subsys-
tem to have classical modes, its maximum response can be calculated straight-
forwardly with the response-spectrum method of dynamic analysis. Examples
of such in-structure response spectra are contained in Section 4.3 (Fig. 4-9). Prob-
lem 4.1 addresses the uncoupling criterion.

4.2 SPATIAL VARIATION OF SEISMIC LOADS
4.2.1 Free-Field Motion

Before discussing the seismic load applied to the structure, the free-field
response of the site has to be examined. It is convenient to distinguish between
vertically incident waves and horizontally propagating waves. Chapter 6
contains a thorough discussion of the different types of waves. At this stage, the
following simplified description illustrated in Fig. 4-2 is sufficient for an under-
standing of the concept. Vertically incident waves propagate vertically. The
compressional P-wave for which the particle motion coincides with the direction
of propagation causes the vertical component of the earthquake with amplitude
uf. The two shear waves SV and SH whose particle motion is perpendicular to
the direction of propagation lead to the two horizontal components with
amplitudes uf and «/. In a horizontal plane, the particle motion at a specific
time is constant. The P-wave and the SV- and SH-waves propagate with the
velocities ¢, and c,, respectively.
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Figure 4-2 Free-field motion of horizontally propagating and vertically incident
waves.

Selecting the angle of incidence w (measured from the horizontal x-axis
in the vertical x-z plane) to be different from 90°, inclined body waves are gen-
erated. Both the P- and SV-waves will result in the horizontal and vertical free-
field motions u and uf. The other horizontal motion uJ is caused by the SH-wave.
(The letters V and H denote that the particle motions take place in the vertical
plane and in the horizontal direction, respectively.) As the wave front is inclined,
the inclined body waves propagate horizontally across a horizontal plane in the
x-direction with an apparent velocity ¢, which is a function of the velocity of
propagation of the body wave and of y. Projecting the wavelength measured
along the direction of propagation onto the horizontal x-axis results in

Cs for SV- and SH-waves (4.1a)
cos Y
C,=
Cp for P-wave (4.1b)
cos

This means that at a specific time, the particle motion at two points on the x-axis
will differ. Besides inclined body waves, surface waves (so-called Rayleigh and
Love waves) exist, which also propagate horizontally. These are not shown in
Fig. 4-2.
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It is appropriate to select the positive direction of the z-axis as pointing
downward when addressing the soil, and upward when dealing with the structure.
A simple transformation of coordinates is then needed when assembling the
contributions of the two substructures.

4.2.2 Kinematic Motion of Surface Structure with Rigid Base

Turning to the spatial variation of the seismic loading applied to a struc-
ture, it is informative to split the total motion into components caused by the
kinematic and inertial interactions. This procedure is presented in Section 3.2.
A surface structure with a rigid basemat is first assumed. As discussed in
connection with Fig. 3-10, the motion of kinematic interaction is equal to that
of the free field for a surface structure with vertically incident waves. Since for a
rigid basemat the scattered motion {u2} equals that of kinematic interaction
(Eq. 3.29b), uf = uf, v¢ = uf, and w# = uf apply. The six rigid-body components
of {uf} are the three translations with amplitudes u¢, v%, and w¢ and the three
rotations with amplitudes a2, 82, and y%, the latter being zero for this case. The
displacements of kinematic interaction are constant throughout the structure
for vertically incident waves, leading also to constant accelerations, which,
multiplied with the mass of the structure, lead to the loads to be applied in the
inertial-interaction part of the analysis (see Fig. 3-10).

Addressing the effect of horizontally propagating waves, the vertical
component of the free-field motion uf is examined first. The variation corre-
sponding to ] along the x-axis, which is the direction of (apparent) propagation,
is shown in Fig. 4-3c. To determine {##} accurately, Eq. 3.19 should be used,
which requires the calculation of the dynamic-stiffness matrix of the soil [S¥,
(=[S1,] for a surface structure). Because in this equation [S{,] and its inverse
are present, the influence of the stiffness of the site on {uf} will be small. The
vector {uf} can, for this discussion, be determined approximately, based on
geometric considerations only (see Problems 4.2, 4.3, and 4.4). As the basemat
is rigid, some “average” vertical displacement with an amplitude w? and, in
addition, a rocking component turning about the y-axis with an amplitude g2
arise. The corresponding motion of the kinematic interaction in the structure
follows, using rigid-body kinematics. The amplitude B2 generates a horizontal
displacement with an amplitude #*, which increases linearly with height, and an
additional vertical displacement proportional to the horizontal distance from
the center of the basemat. The resulting motion is shown in the vertical x-z
plane and in the horizontal x-y plane in Fig. 4-3c. The amplitude of the resulting
vertical displacement is denoted as u¥. Analogously, the (tangential) horizontal
component of the free-field motion »J will result in a translational component
with an amplitude v# and a torsional component turning about the z-axis with
an amplitude y& (Fig. 4-3b). In any horizontal plane of the structure, the motion
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Figure 4-3 Kinematic motion of surface structure with rigid basemat for hori-
zontally propagating wave. (a) Horizontal component coinciding with direction of
propagation; (b) horizontal component perpendicular to direction of propaga-
tion; (c) vertical component.

of kinematic interaction consists of a constant displacement in the y-direction,
onto which a constant tangential displacement is superimposed. Finally, the
(radial) horizontal component of the free-field motion 7 leads only to a transla-
tional component with an amplitude u# (Fig. 4-3a). The corresponding displace-
ment amplitudes % are constant throughout the structure. Because of the
averaging effect resulting in self-canceling, u£, v, and w# for horizontally prop-
agating waves are smaller than the corresponding values, assuming the same
wave as vertically incident.

The resulting kinematic motion of the rigid base as discussed above is only
approximate. The important components of motion are properly represented. A
rigorous analysis based on Eq. 3.19 would show that small additional terms can
arise, assuming so-called welded contact (see Sections 7.3 and 7.4): For instance,
for the free-field motion 7, an additional rocking component with an amplitude
a2 arises. These values can, however, be neglected. Even if this rigorous formula-
tion is used, the kinematic motion of the rigid base will consist of six components
at the most. The corresponding kinematic motion (displacements and accelera-
tions) throughout the structure follows from rigid-body kinematics.
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4.2.3 Kinematic Motion of Embedded Structure with Rigid Base

The embedded structure with a rigid base (basemat and side walls) is
examined next. In Fig. 4-4 the kinematic motion resulting from the horizontal
component of the free-field motion uf assumed to arise from a vertically incident
wave is shown. As uf varies along the vertical wall of the embedment, an addi-
tional rocking component with an amplitude 2 is generated, leading to a linear
variation of u% with height and to a vertical component with an amplitude u*.
By the same reasoning, the horizontal component of the free-field motion zf
from a vertically incident wave leads to 2 and af. The amplitude u/ results in
w# and no additional rotational term.
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Figure 4-4 Kinematic motion of embedded structure with rigid base for verti-
cally incident waves.

Using the results discussed in connection with Figs. 4-3 and 4-4, the
response of the embedded structure with a rigid base for a horizontally propa-
gating wave can be determined. For instance, the component of the free-field
motion ¥} propagating horizontally in the x-direction results in the translational
component with an amplitude vg, in the torsional component with an amplitude
y% (Fig. 4-3), and in the rocking component with an amplitude .

4.2.4 Kinematic Motion of Structure with Flexible Base

Examining the influence of a flexible basemat, the kinematic motion
throughout such a structure is equal to that of the free field at the surface only if
the structure is founded on the surface and only for vertically incident waves
(Fig. 3-10). For an embedded structure or for horizontally propagating waves,
the seismic loading case for a flexible base is complex. This will also affect the
modeling. As discussed in Section 3.2, there is no advantage in splitting the total
motion into components caused by kinematic and inertial interaction in this
case.

4.2.5 Axisymmetric Structure

The spatial variation of the kinematic motion in an axisymmetric structure
(e.g., a solid or a shell) is addressed next (Fig. 4-5). Only the case where the
kinematic motion of the base can be described by the six components ug, v&, wi,
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Figure 4-5 Spatial variation of kine- N _ -~ __~
matic motion in axisymmetric structure. —~——

%, B, and p¢ at the center of the base O is examined. This applies, as discussed
above, to a structure with a rigid base even for embedment and even for hori-
zontally propagating waves and to a surface structure with a flexible basemat for
vertically incident waves. For this latter case, the rotational components vanish.
A horizontal section at the height z is shown in Fig. 4-5. In a point with the
coordinates x, y, and z the components of the kinematic motion %, uf, and u¥
are

uf = uf + 28 — yv8 (4.22)
uk = v8 — zof + xys (4.2b)
uf = w# + yaf — xfig (4.2¢)

Introducing cylindrical coordinates with the radius r and the circumferential
angle 6,
x =rcosf (4.3a)
y=rsinf (4.3b)

and denoting the amplitudes of the components in this coordinate system as
u* and v* leads to
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u* = cos 0 u* -+ sin 0 u* (4.4a)
¥ = —sin 0 u¥ + cos 0 uk (4.4b)
Substituting Eqgs. 4.2 and 4.3 in Eq. 4.4 results in
u* = cos 0 uf + sin @ v& — sin @ zaf + cos 6 z % (4.5a)
v* = —sin @ uf + cos @ v& — cos 6 zaZ — sin 0 zB2 + ry¢  (4.5b)
w¥ = wf + rsin @ a& — rcos 8 B¢ (4.5¢)

Circumferentially, the kinematic motion varies only with the zeroth and first
harmonics of a Fourier series in 8. With respect to the plane § = 0°, the terms
in 4% and B¢ vary as the first symmetric harmonic, v¢ and af as the first antimetric
harmonic. The terms in w# and p# vary as the symmetric and antimetric parts,
respectively, of the zeroth harmonic. The inertial loads acting in the inertial-
interaction part of the analysis will vary analogously, as they are calculated as
the product of the mass and of the acceleration of the kinematic motion.

A finite-element discretization of the axisymmetric structure for inertial
interaction (Eq. 3.32) can also be based on a Fourier expansion of the displace-
ments in the circumferential direction.

W = Y uicosn@ + Y ulsin nf (4.6a)
vl = —> visinnf + Y v2 cos nf (4.6b)
w =Y wicosnf + > wasin nf (4.6c)

For instance, u} represents the nth amplitude of the radial displacement and is a
function of r and z. The superscripts s and a denote the symmetric and anti-
metric parts, respectively, and 7 is used to indicate inertial interaction. As the
trigonometric functions are orthogonal,

J-h cos j@ cos 18 df =0 forj=+1 (4.7a)
0

Jzn cos j@ sin /0 d§ = 0 (4.7b)
0

the dynamic-stiffness matrices for all harmonics of the symmetric and antimetric
cases are independent from one another. The discretized loading applied in the
finite-element model is proportional to the product of the kinematic and inertial

2n
motions in the same direction, integrated around the circumference (J uku' do,
0

etc.). Because of Eq. 4.7 the loading cases also decouple. Thus the /th symmetric
and antimetric loading terms only excite the corresponding /th displacement
term.

This means that in the inertial-interaction analysis, only the zeroth and
first harmonics are excited for the cases studied. The same applies to the total
motion. For any axisymmetric surface structure, only the first harmonic (sym-
metric to the earthquake component) is nonzero for the horizontal component,
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and all harmonics, with the exception of the zeroth symmetric one, vanish for
the vertical component, assuming vertically incident waves. For instance, for
the case shown in Fig. 4-3b, only the zeroth antimetric harmonic and the first
antimetric one are excited. The same applies if the structure with a rigid base is
embedded.

In general, all three components of a specific harmonic are excited, even
if the applied load acts only in one or two directions. For instance, w# (arising
from vertically incident wf) leads to only a vertical loading w* (Eq. 4.5) of the
zeroth symmetric harmonic, and excites not only w;, but also #; and v;. The
amplitude u# (resulting from uZ) leads to #* and v*, which give rise to nonzero
ui, v{, and wi.

The fact that for the earthquake excitations discussed above, only the
zeroth and first harmonics are excited for axisymmetric structures is of para-
mount importance when modeling the structure. For many cases, beams with a
corresponding annular section can be used as an approximation. In the theory
of strength of materials, plane cross sections are postulated to remain plane.
This means that, for example, for a beam with a vertical axis, the out-of-plane
displacement u, will vary as cos @ around the circumference for an applied
bending moment acting along the y-axis, corresponding to the term in wi (Eq.
4.6¢). For the section to translate in-plane as a rigid body, the displacement u,,

u, = ucosf — vsin @ = u cos® § + vj sin? 6 4.8)

has to be independent of #. This can only be the case if 4 = »{. Using beam
theory, a constraint is thus introduced into the analysis which is not present in
the theory of elasticity applied to axisymmetric solids and shells. Additional
approximations thus apply when using beams. An applied normal force will
lead to only an out-of-plane displacement u, (= w;). The corresponding in-plane
displacements u; and v} are zero. Similarly, in a beam, an applied torsional
moment will only result in %, setting u5 = w3 = 0.

4.2.6 Example

For the sake of illustration, the outer containment of a reactor building
of a nuclear-power plant is examined. This so-called shield building of reinforced
concrete built in on the level of the basemat (Fig. 4-6) consists of a cylindrical
and a spherical part with a thickness of 1.20 m. The other dimensions are
specified in Fig. 4-6. Two dynamic models are used for comparison: a shell
model using 36 curved higher-order isoparametric frusta in the meridional
direction with a Fourier series (zeroth and first harmonics) in the circumferential
direction, and a beam model with 52 nodes. For the seismic loading case, a
much coarser model with fewer nodes could have been selected (see Section 4.3.4).
This discretization is also used for the calculation of impact loads, which excite
much higher frequencies (see Section 4.3.2). Six cross-sectional values are deter-
mined for the beam. Consistent mass and mass moment of inertia are introduced
in the beam model.
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Figure 4-6 Dynamic models of reactor-shield building.

In Table 4-1, the natural frequencies corresponding to the first harmonic
of the two models are compared. As the beam theory introduces a constraint,
which stiffens the model, the natural-frequency values of the beam are higher
than those of the shell. Excellent agreement exists for the lower modes. For the
higher modes, discrepancies arise. The same applies to the mode shapes, as is
shown in Fig. 4-7, where the elevations of the second and fifth are plotted. The
lateral deflection of the beam is, in general, smaller than the radial displacement
with the amplitude u$ of the shell (corresponds to the lateral displacement at
@ = 0°) and larger than the circumferential displacement with the amplitude »;
(corresponds to the lateral displacement of the shell at 90°). As u = 3, a

TABLE 4-1 Horizontal Natural Frequencies (Hz)
(First Harmonic)

Mode Number

Model 1 2 3 4 5

Beam 4.41 13.46 25.22 28.74 40.41
Shell 4.38 13.31 21.64 22.38 25.06
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Figure 4-7 Horizontal mode shapes (Ref. [2]). (a) Elevation of mode shapes;
(b) vertical and horizontal projections at level 29.30 m.

distortion of the cross section takes place, in contrast to the beam theory. This is
demonstrated in Fig. 4-7b, where the horizontal and vertical projections at the
indicated level are shown. As expected, the deviation from the results of the
beam for the fifth mode is larger than for the second. For a horizontal earthquake
associated with vertically propagating waves, the two models will lead to very
similar results, as the generalized modal loads (participation factors) of the
lower modes dominate. Even the in-structure response spectra, calculated, for
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example, at 0 and 90° around the circumference at this level of the shield building,
can hardly be distinguished from that of the beam model. Any stiff floors will
tend to force the shell model to behave more as a beam. The rigid basemat and,
to a lesser extent, the spherical part have this effect in the shell model of the
shield building.

In Table 4-2 the natural frequencies of the zeroth harmonic are compared.

TABLE 4-2 Natural Frequencies (Hz) (Zeroth Harmonic)

Vertical Torsional

Mode Number Mode Number
Model 1 2 1 2 3
Beam 13.21 39.63 9.65 28.56 45.87
Shell 12.72 23.10 9.65 28.28 44.15

The agreement is excellent for all indicated modes for the antimetric term, which
corresponds to the torsional modes. For the vertical modes (symmetric term),
the second mode already shows large discrepancies. This is caused by the
“breathing” mode of the shell model (ug, v5) in the dome which leads to signifi-
cant local bending behavior. The latter cannot be represented by a beam.

When modeling an axisymmetric structure as a beam, it is important to
make use of all features of beam theory. For instance, the shield building is
obviously not a slender structure. It is thus imperative that when calculating
the static-stiffness matrix of a beam element, the contribution of the shear
force to the strain energy be taken into account. Neglecting the contribution of
the bending moment would be just as wrong, as shown in Table 4-3. It is inter-
esting to note that for the higher modes with many nodes, the strain energy of the
shear force becomes dominant. The mass moment of inertia in the beam model
is of secondary importance. Neglecting its influence results in somewhat larger
frequencies (results not shown).

TABLE 4-3 Horizontal Natural Frequencies of Beam (Hz)

Mode Number

Strain Energy 1 2 3 4 S
Moment only 5.99 28.07 58.45 58.45 85.54
Shear force only 6.05 18.18 29.86 29.86 41.48

Moment and shear force 4.41 13.46 25.22 28.74 40.41
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4.3 DIRECT DISCRETIZATION

4.3.1 Finite-Element Model

In any discretization, the dynamic degrees of freedom in a structure have
to be able to represent all significant inertial loads. To determine the dynamic-
stiffness matrix, the displacements throughout the structure have to be expressed
as a function of these degrees of freedom. The finite-element concept represents
one approach to achieve this. It is so well established that it does not have to be
treated in any detail. Each part of the structure with the same structural behavior
(e.g., plate, shell, beam, solid) is divided into elements, varying the shapes, the
dimensions, and the material properties of the elements, if necessary, but using
as many identical elements as possible. The generalized displacements at the
nodes located on the boundaries of the elements are the degrees of freedom.
Their total number can be increased straightforwardly by selecting more ele-
ments. Interpolation functions, so-called shape functions, have been developed
which express the displacement field of an element in terms of the nodal values
of this element. Continuity across element boundaries is satisfied. The dynamic-
stiffness matrix of an element is easily established, being the same for identical
elements. Assembling the contributions of all elements results in the banded
dynamic-stiffness matrix of the dynamic model, which allows efficient solution
procedures to be applied.

In some instances the finite-element model of the total structure used for
the static analysis can also be applied with no or only small modifications (e.g.,
by adding mass of nonstructural parts) for the dynamic one. This can be the case
if the structure is of simple geometry (which does not mean that the structural
behavior is necessarily easy to determine), or if beam elements are used. The
number of degrees of freedom of the model using sophisticated elements, if
appropriate, is relatively small. A few examples are doubly curved arch dams
modeled with higher-order isoparametric elements, certain shell and plate
structures, bridges modeled with three-dimensional curved beams, chimneys, and
certain high-rise buildings. In other instances, the static finite-element model
of a complex structure is so detailed that it would be uneconomical to use it in
a dynamic analysis. To calculate results of acceptable accuracy, a coarse dynamic
model is sufficient, which can be established either by reducing the degrees of
freedom (Section 4.4) or by direct discretization. Many examples are contained
in this section. Finally, either no model of the total structure is established for
the static loading case, or it cannot capture the essential dynamic response.
A detailed dynamic model then has to be created. The next example is such a
case. In all circumstances, the structural behavior determined from the static
analysis should be used when establishing a dynamic model. These results are
especially valuable if the static loads act similarly to the applied dynamic loads
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(including the inertial ones). Calculating such additional loading cases in the
static analysis can be advisable.

Some principles of the direct discretization are illustrated in the following.
Real-world structures for which dynamic analyses have to be performed are
used as far as possible, starting in this text with elaborate models and working
toward approximate ones used for preliminary design.

4.3.2 Models for Impact Load

At first, the combined reactor-auxiliary and fuel-handling building, which
form one structure of a nuclear-power plant, is analyzed for an impact force. The
two buildings share the same basemat and surround the reactor building without
any connections to it. The outer walls and some of the floors are also common to
the two buildings. The box-type structure, which is assumed to be built in at its
base, is shown with its most important dimensions in Fig. 4-8. These safety-
relevant structures and the equipment located within have to be designed to resist
the postulated crash of a Boeing 707-320 impacting at a velocity of 370 km/h. The
force-time diagram for an impact on a rigid target is shown in Fig. 3-15. An
impact area of 37 m? is assumed. Because of the content of high frequencies pres-
ent in the force-time curve of the airplane crash and the small area of loading,
high frequencies up to 100 Hz are excited. The modeling of the structure thus has
to be rather detailed. The local behavior must be adequately represented, and all

27.50m

Figure 4-8 Dynamic model of reactor-auxiliary and fuel-handling buildings for
impact analysis (Ref. [2]).
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modes up to at least 100 Hz included. By assuming symmetry of the structure,
only one-fourth has to be modeled (Fig. 4-8). For the horizontal impact force
acting on the axis of symmetry as shown in Fig. 4-8, only two sets of boundary
conditions have to be processed. A combination of plate elements with high-
order shape functions (in bending and in stretching) for the walls and the floors
and of three-dimensional beam elements for the columns is used, resulting in
thousands of dynamic degrees of freedom for each set of boundary conditions.
Material damping of 0.07 times the critical is selected. To design components
located at points 4 and B, in-structure response spectra, as discussed in Section
4.1.2, are calculated. To be able to do this, the acceleration time histories in
these two points have to be determined. Both points are located on the floor
that is situated on the same level as the center of impact. The in-structure response
spectra in the two horizontal directions are shown for 19/ damping of the com-
ponent in Fig. 4-9. For instance, a component with a fundamental frequency of
15 Hz located at point 4 will experience the following maximum response
parallel to the impact force in the y-direction: a total acceleration of 4 g and a
displacement relative to the floor of 5 mm. As is characteristic for impact loads,
stiff components are subjected to high accelerations and small relative displace-
ments. Moving from point A to point B, the response parallel to the direction of
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Figure 4-9 In-structure response spectra (1% damping) in reactor-auxiliary and
fuel-handling buildings for impact analysis (Ref. {2]).
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impact diminishes as expected, but increases in the other direction. Obviously,
this effect could not be achieved using the vertical-beam model selected for the
seismic excitation (Fig. 4-16).

Modeling axisymmetric structures by selecting a finite-element discretiza-
tion in the meridional direction with a Fourier expansion in the circumferential
direction is efficient not only for certain seismic loads, as discussed in Section 4.2,
but also for impact loads. In this case, higher harmonics than the first must,
however, be included. Each harmonic can be analyzed independently from
the others. As an example, the same reactor-shield building whose dynamic-shell
model is already treated in connection with Fig. 4-6 is analyzed, but subjected
to the airplane crash (Fig. 4-10). The impact load versus time is specified in

BEAM SHELL

67.30m
r

46.90m
r

29.30m
Yy

11.30m
| Sk

Figure 4-10 Dynamic model for reactor-
000m  shield building and impact locations
(Ref. [2]).

Fig. 3-15. The damping ratio { = 0.07 is selected. Two impact locations are
examined. In the shell model, the load acting on the impact area of 3.10 m in
the meridional times 12.00m in the circumferential directions for horizontal crash
at point B is decomposed circumferentially into 16 Fourier terms. For a vertical
crash at point C, a circular impact area of radius 3.44 m is selected, and hence
only the zeroth harmonic is excited. For each harmonic, 333 dynamic degrees of
freedom result. This allows all modes with natural frequencies up to approxi-
mately 200 Hz to be included in the shell model. The beam model of Fig. 4-10
is used for comparison.

The different structural behavior of the two models can best be illustrated
by examining the in-structure response spectra. In Fig. 4-11, the horizontal-
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Figure 4-11 In-structure response spectra (19, damping) in reactor-shield build-
ing, beam as opposed to shell model (Ref. [2]).

response spectra at point A for horizontal impact and the vertical-response
spectra at point C for vertical impact are compared for the two models. The
beam solution underestimates the accelerations by one order of magnitude.
Although the beam model can easily represent modes of up to 200 Hz, the
assumption of no in-plane deformation turns out to be incompatible with the
actual behavior of a loaded shell. This is further demonstrated in Fig. 4-12,
which shows horizontal-response spectra calculated at selected points around
the circumference at level B of the shell model. The aircraft impacts horizontally
on the zero-degree meridian. It is worth mentioning that, for high frequencies,
the response on the meridian opposite to that of impact (180° radial) is larger
than the excitation on the meridian at 90° in the same direction (90° circum-
ferential). The latter is, for a certain range of frequencies, even smaller than the
response perpendicular to it (90° radial). These results emphasize the importance
of the shell modes of higher harmonics. The results of the beam model, which
are shown for comparison, again underestimate substantially the response in
the frequency range of interest. The beam model fails so dramatically in repre-
senting the actual behavior of the shell structure because, first, it cannot simulate
higher harmonics (from the second upward) and second, the assumption of the
beam theory even constrains the first and zeroth harmonics. This is discussed
in Section 4.2.5 (Fig. 4-7).
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Figure 4-12 In-structure response spectra (1%, damping) in reactor-shield build-
ing at level B, variation in points around circumference (Ref. [2]).

4.3.3 Hyperbolic Cooling Tower for Seismic Load

Turning to the seismic loading of axisymmetric structures, the hyperbolic
cooling tower having variable thickness and an eccentric edge beam at the top
is examined (Fig. 4-13). It is stiffened at the lower edge by tapering. Thirty-six
pairs of columns form a V and rest on separate foundations without any con-
necting edge beam. This surface structure thus possesses a flexible base. As the
diameter at the base is quite large, horizontally propagating wave effects
(examined qualitatively in Section 4.2.1) can be important. For this loading case,
the free-field motion at the separate foundations will be different. As discussed
in Section 4.2, modes corresponding to harmonics higher than the first will be
excited. Turning to the dynamic model, the axisymmetric shell is discretized with
30 higher-order finite-element frusta with an isoparametric expansion in the
meridional and a Fourier expansion in the circumferential direction. (This quite
large number is dictated by the loading-case wind, for which results are required
in many points to be able to design the shell.) The stiffening-ring beam and the
supporting columns are synthesized into a dynamic-stiffness matrix compatible
with the axisymmetric shell element. All harmonics from the zeroth to the fifth
are taken into account. A total of 167 modes (with nonnegligible generalized
loads) which span the frequency range from 0.7 to 70 Hz are incorporated into
the dynamic analysis. For vertically propagating waves, only the first and
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Figure 4-13 Hyperbolic cooling tower
(Ref. [3]).

zeroth symmetric harmonics are excited for the horizontal and vertical com-
ponents, respectively, of the earthquake. The first mode shape, with a natural
frequency of 1.96 Hz of the first harmonic, is plotted along the meridional in
Fig. 4-14. The amplitudes ui, v{, and w{ represent the radial, tangential, and
vertical displacements of the first symmetric harmonic (see Eq. 4.6). Clearly
visible is the large relative displacement between the upper and lower ends of
the columns. This global shear distortion of the total tower leads to large
seismic forces in the columns. Hence, for increasing seismic loads, this part
of the tower is the first whose design is governed by the loading case of
earthquake instead of by wind. The second mode, with a frequency = 2.93 Hz,
of the first harmonic contributes less than 1% to the column forces and can
thus be neglected. For a horizontal earthquake associated with vertically
propagating waves, the tower can hence be adequately analyzed using only
the first symmetric mode of the first harmonic, which leads to only one un-
known (the amplitude of the mode shape shown in Fig. 4-14). While for the
analysis of horizontally propagating waves, a standard finite-element discretiza-

Figure 4-14 Shape of first mode of first N s

symmetric harmonic (Ref. [3]). 1 1 1
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tion covering the whole surface of the shell (with nodes also in the circumferential
direction) can be used, this model would be very uneconomical for the calculation
of vertically incident waves. In this type of model the mode with the overwhelm-
ing generalized load is not easily identified and separated from the others before
the response analysis starts. Instead of using thin shells to model the tower, the
discretization can also be based on beams (but only for vertically incident waves).
The latter will approximate the zeroth and first harmonics extremely well. Only
a few nodes along the vertical axis of the tower are needed, the number depending
on how accurately the variation of the cross-sectional values of the beam elements
lying between the nodes can be taken into account.

As developed in depth in Section 4.2, the simple spatial variation of the
seismic inertial loading acting on an axisymmetric structure allows the latter to
be modeled as a beam in the following cases: for a surface structure with a flex-
ible basemat excited by vertically incident waves, and for all wave patterns for a
structure with a rigid base (even embedded). This rule is also applied to struc-
tures which are not strictly axisymmetric. In practice, beam models are selected
even in quite general cases. The number of nodes where the mass is concentrated
is chosen as surprisingly small, their location coinciding with floors. Between
two adjacent nodes, the most general type of a three-dimensional beam element
is applied: The centers of gravity, of shear (= of twist), and of mass do not have
to coincide and the corresponding principal axes need not be parallel. The mass
properties are quite simple to calculate and the dynamic response is relatively
insensitive to this modeling parameter. The real art lies in calculating the stiffness
properties (i.e., the cross-sectional values). Concepts of folded-plate theory can
sometimes be applied. At the nodes, eccentricities of the different vertical axes
can arise, reflecting that stories will vary in plan.

4.3.4 Nuclear Structures for Seismic Load

As examples, the dynamic models of the reactor building and of the
combined reactor auxiliary and fuel-handling structure are sketched. These
models can be used for the final seismic analysis, which forms the basis for the
design of the structures and for the calculation of the in-structure response
spectra applicable to the components. The basemat, with a thickness of 4.5 m
of the reactor building (Fig. 4-15), is assumed to be rigid. From its center four
independent beams whose axes coincide are used to model the shield building,
the free-standing steel containment, the so-called drywell, and the pressure vessel
with its pedestal. Each beam has only three nodes (besides that at the basemat),
resulting in a total of 13 nodes with 78 dynamic degrees of freedom in a three-
dimensional model. The combined reactor auxiliary and fuel-handling structure
(already introduced in Fig. 4-8), being a box-type structure, is modeled as a
single vertical beam with 14 nodes leading to 84 dynamic degrees of freedom
(Fig. 4-16). As the structure is not really symmetric over the total height, the
ends of the beam elements are connected to the nodes, with horizontal eccentric-
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Figure 4-16 Dynamic model of reactor auxiliary and fuel-handling buildings for
seismic analysis.

ities shown as dotted lines (indicating rigid zones). The tower, located between
levels 26.30 m and 43.20 m, is not designed for aircraft impact and is thus not
represented in Fig. 4-8. Comparing the two dynamic models of the same struc-
ture shown in Figs. 4-8 and 4-16, the influence of the applied load on the
discretization becomes evident.

Modeling a structure as a vertical beam does not mean that the basemat
has to be assumed to be rigid. For an axisymmetric structure, annular finite
elements can be introduced to model the flexibility of the basemat. As an exam-
ple, the axisymmetric reactor building is investigated again (Fig. 4-17). The
dynamic model of the superstructure is the same as described above (Fig. 4-15).
The flexible basemat is discretized with 11 annular finite elements in bending
(left-hand side of Fig. 4-17). No mass is associated with the six circular nodes
shown as thin lines. Their static degrees of freedom are eliminated. These nodes
can thus be disregarded for the dynamic model. The beam representing the steel
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basemat of reactor building (after Ref.
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containment is connected to the same node on the basemat as the shield building.
The soil is discretized with 113 subdisks, as shown on the right-hand side of this
figure. The modeling of the soil is treated in depth in Chapter 7. At this stage,
it is sufficient to state that a resultant force having three components acts on
each subdisk. The [4]-matrix defined in Eq. 3.13, which relates the (constrained)
dynamic degrees of freedom of the basemat to those of the soil on the structure—
soil interface, will thus have 3-113 = 339 rows. The basemat is assumed to be
rigid in its plane, which leads to three dynamic degrees of freedom (two hori-
zontal translations and twisting around the vertical axis). As the four branches
of the superstructure are modeled as beams, the intersection lines for each beam
on the level of the basemat have to deform as a rigid body (vertical translation
and two rocking components). Each circle of subdisk centers which lies between
two adjacent intersection lines with a beam is also constrained by an (independ-
ent) rigid-body motion. Thus five circular nodes (shown as heavy lines) with
5:3 = 15 dynamic degrees of freedom result. Together with the vertical displace-
ment in the center of the basemat and the three components describing the rigid
in-plane motion, a total of 19 dynamic degrees of freedom of the constrained
basemat arise. This is also equal to the number of columns of the [4]-matrix.
The total dynamic degrees of freedom of the structure-soil system equals 4-3-6
-+ 19 = 91. A parametric study (whose results are not reproduced here) shows
that for the thicknesses encountered in nuclear power plants (3 m and more),
the basemat of the reactor building can be assumed to be rigid (see Section 9.3.1).

Modeling part of a building or a total structure as a vertical beam as in
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Figs. 4-15 and 4-16 is possible only for a box-type structure. In addition, a rigid
basemat, stiff floors, and a thick roof tend to force the horizontal cross section
of the structure to act as a beam. Many such structures are encountered in
nuclear power plants. The required radiation protection and the presence of
heavy equipment and extraordinary load cases (e.g., aircraft impact) lead to such
stiff buildings with large mass, for which the analysis of soil-structure interaction
is important.

4.3.5 Frames with Shear Panels for Seismic Load

In frame-type structures with shear panels, the floors can be assumed rigid
only in their own planes. The modeling procedure is explained using the three-
dimensional building of Fig. 4-18 as illustration. The structure is made up of
plane frames, located arbitrarily in plan. In the example there are three such
frames, two of which share the same column. It is assumed that the frames, which
are composed of beams and columns (without torsional stiffness) as well as walls
and shear panels, resist forces only in their own plane. In each frame the eleva-
tions of the floors are the same. The floor diaphragms are assumed to be rigid
in their planes. This allows the horizontal displacement of all frames at each
floor level to be expressed in terms of three dynamic degrees of freedom (defined
conveniently at the center of mass of the floor): two horizontal translations and
a rotation around the vertical axis. Obviously, the horizontal beams are inexten-
sional. The bending stiffness of the floor can be approximately represented in
the beams of the frames. In each joint of the frame, a vertical displacement and
an in-plane rotation are introduced as additional degrees of freedom. For the
roof level, all degrees of freedom are indicated in Fig. 4-18. In the column that
is common to the two frames, two vertical displacements are introduced, which
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Figure 4-18 Three-dimensional frame.
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will not turn out to be equal. As the two frames are assumed to be perpendicular,
the rotations in this joint of the common column will be uncoupled. The
dynamic-stiffness matrix of the building can be established using standard
plane-frame programs.

Various approximations are possible. Also the columns can be assumed to
be inextensional. The moment of inertia associated with the rotations of the
joints of the frame can be neglected. This limits the dynamic degrees of freedom
to three per floor. The contribution of a frame to the static stiffness of the system
can be determined by applying sequentially horizontal unit forces at each floor,
calculating the horizontal displacements at all levels, which leads to the flexibility
matrix, which is then inverted. Alternatively, the number of dynamic degrees of
freedom can also be reduced, using the procedure of static condensation
described in Section 4.4.2.

This procedure of lumping mass in nodes where the dynamic degrees of
freedom are defined works well if a significant part of the total mass is con-
centrated in small zones. This is, for example, the case for the frame structure
shown in Fig. 4-18, for which most of the mass is present at the floor levels. The
contribution of the columns of the frame is small and can easily be lumped in
the same nodes.

4.3.6 Models Based on Generalized Displacements

For a structure with a distributed mass, the use of generalized displace-
ments can be appropriate to determine the consistent mass matrix (and the
static-stiffness matrix and the load vector). In the finite-element method, local
generalized displacements (shape functions) are selected, leading to a banded
dynamic-stiffness matrix. Global generalized displacements, which are defined
throughout or over a large portion of the structure, can also be introduced. These
deflection patterns must satisfy the geometric boundary conditions. As the
formulation is analogous to that of the finite-element method, only the results
are summarized, using a beam with coordinate x for illustration. The transverse
displacement w(x) is expressed as

w(x) = 3, z,$,(x) 4.9)

=1

where ¢,(x) and z, are the generalized displacement and amplitude (generalized
coordinate), respectively. The subscript i denotes the ith term and »# the number
of dynamic degrees of freedom. As the mass matrix [M] and the static-stiffness
matrix [K] are the coefficient matrices of the quadratic forms corresponding to
the kinetic and strain energies, respectively, the elements

my = [ $.008,0Im(x) d (4.10)

Kiy = [ $uxs o (OEICH) dx @11
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follow. The mass per unit length is m(x), the moment of inertia /(x), and the
modulus of elasticity E. A comma denotes differentiation. In general, [M]and
[K] are full matrices.

Further examples of structural models are contained in the engineering
applications in Section 9.3. Simple models used to identify the key parameters of
soil-structure interaction in a parameteric study are described in Sections 3.4,
9.1, and 9.2. Approximate models are described in Problems 4.5, 4.6, and 4.7.

4.4 REDUCTION OF NUMBER OF DYNAMIC DEGREES
OF FREEDOM

Using the finite-element concept is the most straightforward and systematic
method of discretization of a structure. When calculating the static-stiffness
matrix, derivatives of the shape functions are required. As differentiating leads
to a loss of accuracy, the model for a static analysis has to be quite detailed. As
explained in Section 4.1, a much coarser model is in many cases sufficient for a
dynamic analysis. This is also apparent from the fact that, to determine the mass
matrix, the shape functions themselves are used. In a specific model, the inertial
forces are thus represented much more accurately than the elastic ones. Before
starting with the dynamic analysis, procedures should thus be applied which
systematically reduce the large number of degrees of freedom used for the static
analysis to the smaller number of the dynamic model. After performing the
dynamic analysis, it must be possible to calculate the original degrees of freedom
before determining elastic stresses. This method of establishing a dynamic
model by reducing the number of degrees of freedom is attractive, as less experi-
ence of the analyst is needed, the procedure can more easily be automated, and
the stresses should be more accurate than if the (reduced) model were derived
directly. The results of the dynamic analysis are also consistent with those of
the static one, as the same original model is used. The computational effort can,
however, be high. It is worth stressing that reducing the number of degrees of
freedom for the dynamic analysis results in an approximation. Various proce-
dures, which can be modified further, exist.

4.41 Transformed Equations of Motion

The equations of motion with the original degrees of freedom are specified
in total displacements for the flexible base in Eq. 3.9 and for the rigid base in
Eq. 3.15. If the motion is decomposed into those of kinematic and inertial
interactions, Egs. 3.26 and 3.32 apply in the inertial interaction part of the
analysis for the structure with a flexible and a rigid base, respectively. The
equations of kinematic interaction do not have to be addressed in this context.
As discussed in Section 3.2.1, there is no advantage in splitting the motion up
into two parts for a structure with a flexible base, with the exception of a surface
structure for vertically incident waves (for which case the kinematic motion
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equals that of the free field). For a structure with a rigid base, the kinematic-
interaction analysis results in the scattered motion.

Consistent with the concept of substructuring, the degrees of freedom on
the structure-soil interface (subscript b or o) are not modified. The contribution
of the structure to the equations with the original degrees of freedom can be
formulated as (Eq. 3.2)

[SHu} = {P} (4.12)
For a flexible base, [S] is made up of [S,,], [S,,), and [S},], and {u} consists of
{u,} and {u,} with the superscript ¢ or i. The vector { P} either is zero or, for a rigid
base, is specified by the right-hand side of Eq. 3.32, which is a function of the
properties of the structure.

All reduction procedures can be interpreted as a transformation from the
original degrees of freedom {u} to another, smaller set with amplitudes {u,}.
This is denoted as

{u} = [THu,} (4.13)
The transformation matrix is denoted as [T], the index r standing for reduction,
Substituting Eq. 4.13 in Eq. 4.12 and premultiplying the equation with [TT

results in
[S/Xu} = {P.} (4.14)
where
[S] = [TT[SIT] (4.15a)
{P.} = [TT{P} (4.15b)
Using the definition of [S,] (analogous to Eq. 3.1),
[S] = [K](1 + 2{i) — w*[M,] (4.16a)
[(K.1 = [TT[K]T] (4.16b)
[M,] = [TF[M][T] (4.16c)

follows. The various reduction methods differ in the choice of {1,} and of [T],
leading to different forms of the reduced property matrices [K,], [M,] and of the
load vector {P,}. The dynamic degrees of freedom on the structure-soil interface
with amplitude {«,} will always be present in {u,}. Besides displacement ampli-
tudes of selected nodes of the structure, other variables, such as amplitudes of
generalized displacements (Ritz vectors) or of mode shapes (generalized coor-
dinates), can also be chosen in the set {u,}.

4.4.2 Mass Lumping Followed by Static Condensation

The first procedure to be discussed is called mass lumping followed by static
condensation. It is assumed that lumping the mass in specific nodes of the
structure leads to an acceptable accuracy of the results. For instance, neglecting
the mass moment of inertia in all joints of a three-dimensional frame reduces
the dynamic degrees of freedom by one-half. Actually, the rotational inertia is
not omitted, but it is concentrated at one node [e.g., at the center of the (rigid)
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base]. Assuming certain beams and columns to be inextensional allows a further
reduction of the translational degrees of freedom. In addition, other translational
degrees of freedom (e.g., every second one along the axis of a beam) can be
chosen as free of mass. In all cases the total mass and the total mass moment of
inertia must be properly modeled to be able to represent correctly the rigid-body
motions of the structure. In this part of the analysis, which bears comparison
with that of the direct discretization described in Section 4.3, the experience of
the analyst is important. For instance, in the three-dimensional frame of Fig.
4-18 for a horizontal earthquake excitation, the inertial properties could be
assigned only to the three dynamic degrees of freedom on each floor. The terms
of the mass matrix corresponding to the vertical displacement and in-plane rota-
tion of each column on every floor vanish. In many cases the number of dynamic
degrees of freedom will be one order of magnitude smaller than in the original
model.

After lumping and making use of Eq. 3.1, Eq. 4.12 with the original degrees
of freedom is specified in partitioned form as

K.] [K.nl L L [IM] (0] {u,}}_ {{P,}}
([[Km,] [Kmm]:l(l+2C’) w [ [0] [OJ){{um} ~ o) 4.17)

The subscript r denotes all dynamic degrees of freedom with mass and m the
massless nonessential variables. The former can be called the “master” and the
latter the “slave” unknowhs. Allocating the mass in discrete nodes not only
affects the coefficient matrix, but also the right-hand side. The vector {P,} as a
function of [M,,,] (Eq. 3.32), which is zero, also vanishes. Using the lower
partition of Eq. 4.17, {u,,} can be eliminated:

{Un} = —[Knm) [ Knel1t,} (4.18)
This leads to the transformation matrix [7] (see Eq. 4.13)
(71
= [—[Kmml-l[Km,J @19
The unit matrix is denoted as [I]. Substituting in Egs. 4.16b and 4.16c leads to
[K.] = [K..] — [K.nl[Knm] ' [Komi] (4.202)
[M,] = [M,] (4.20b)

The reduced equations of motion (Eq. 4.14) are

(K] — [Kenl K] KD + 280) — *[ M, )u,} = {P}  (4.21)

The band structure of the original equation (Eq. 4.12) is lost, as [K,] is, in

general, a full matrix. If Eq. 4.12 already contains some zero-mass terms and

no additional slave unknowns are introduced (i.e., no mass lumping is necessary),

obviously the procedure is exact. Solving the original equation (Eq. 4.12) or
the reduced one (Eq. 4.21) will in this case lead to identical results.

Various modifications are possible. The part of the procedure consisting

of lumping of the mass can be skipped. In this case, [M,,,] and {P,} (as well as
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[M,,] for a consistent mass matrix) will be nonzero (Eq. 4.17). The master
degrees of freedom with amplitudes {u,} are selected as those for which the
ratios of the ith diagonal term m,,/k,, are the largest. This allows the reduction
process to be automated. The amplitudes of the slave displacements {u,,} are
still assumed to follow from enforcing {u,} statically on the otherwise unloaded
structure, leading to the same [T'] matrix (Eq. 4.19). The reduced equations are
specified in Eq. 4.14 with Egs. 4.15b and 4.16c, while [K,] still follows from Eq.
4.21. The reduced mass matrix [M,] is not diagonal any more. This modified
procedure does not correspond to eliminating {u,,} from the lower partition of
the original equation of motion (Eq. 4.12). If this were done, the reduced coeffi-
cient matrix of {u,} would be a very complicated function of the excitation
frequency w. A frequency-independent static-stiffness matrix and a mass matrix,
which is multiplied with w?, could not be identified. The same would apply to
the right-hand side.

4.4.3 Substructure-Mode Synthesis

To derive the basic equation of motion in Section 3.1, the actual structure
and the soil are interpreted as substructures. No approximation is introduced.
For certain buildings, it can be appropriate to identify further substructures.
This is, for example, the case for the reactor building shown in Fig. 4-15 with
the shield building, the steel containment, the drywell, and the reactor-pressure
vessel with its pedestal as substructures. A lot of design work is performed on
each substructure independently of the others. For instance, for the pressure
vessel with the pedestal built in on the level of the basemat, the first few vibra-
tional modes will be known when the dynamic model of the total structure is
established. Those of the shield building (Tables 4-1 and 4-2 and Fig. 4-7) are
also given. Selected mode shapes and natural frequencies of the other subsystems,
each built in, can easily be determined. When modeling the total structure, it is
natural that the analyst wants to make use of this information. Selected vibra-
tional modes of the substructures are used as shape functions. This second
procedure to be examined is called substructure (or component)-mode synthesis.
The method is approximate, as only certain vibrational modes of the substruc-
tures are normally included in the dynamic analysis of the total system. Inspec-
tion of the vibrational modes and of the natural frequencies of each subsystem
built in and analyzed independently allows valuable physical insight. The
advantages of the substructure method discussed in Section 1.6 apply to each
individual substructure of the building. Judgment has to be applied when
selecting the modes of the substructures. Those are included which will have a
significant contribution to the important vibrational characteristics of the total
structure.

The equations of motion are derived using for illustration Fig. 4-19a,
which shows schematically the finite-element discretization with the original
degrees of freedom with amplitudes {u}. Three substructures are identified.
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Ta

Figure 4-19 Substructure-mode synthesis. (a) Nomenclature; (b) mode shape;
(c) quasi-static transmission of boundary motion.

The vector {} is partitioned into {#,}, the displacement amplitudes at interior
points, and into {u }, those at nodes on the common boundary of two adjacent
substructures. The same partitioning applies to all property matrices and to the
load vector. The vector {«,} has to be preserved in the reduced equation to be
able to interconnect the substructures to form the total system. The vector {1},
with the displacement amplitudes on the structure-soil interface, is always
contained in {u,}. The vector {«,} will be expressed by the amplitudes {z} of the
vibrational modes of the substructures, assuming a fixed boundary ({«,} = {0}).
For each substructure with superscript j, the eigenvalue problem is formulated
as (Eq. 2.2)

[KI[@'] = [MI][®') Y] 4.22)

[Q] and [®’] denote the matrices of the (lowest) eigenvalues (square of the
natural frequencies) on the diagonal and of the corresponding eigenvectors
(mode shapes), respectively, of the substructure j. The number of modes is
selected smaller than the number of internal degrees of freedom. The ortho-
gonality conditions of the suitably scaled [®/] are as follows (Eq. 2.3):

[T TMA®] = [1] (4.23a)
[T [KiN[P] = [Q] (4.23b)

The following transformation is introduced:
{ul} = [TiNul} + [Nz} (4.24)

{u!} denotes the displacement amplitudes on the boundary of substructure j.
Using the concept of static condensation, a column of [T7,] represents the
static displacements at nodes i of the (otherwise unloaded) substructure j when
a unit displacement component is enforced at one node on the boundary and all
other boundary displacements vanish. The motion {«/} is thus quasi-statically
transmitted to the interior nodes, resulting in the displacement amplitudes
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[T{]{!} in these points. In analogy to Eq. 4.18, [T}] is specified as

The vector {z’} represents the amplitudes of the selected modeshapes of the
substructure j. One column of [®/] and [T7,] is shown in Fig. 4-19b and c. The
vector symbols are omitted in this figure.

Equations 4.22 to 4.25 also apply to the ensemble of all substructures,
assembling the contribution of each substructure. The superscript jis dropped
when denoting the total structure.

The vector of the reduced displacement amplitudes {u,} consists of {z} and
{u.}, leading to the following transformation:

{{u,}} _ [m [m} { {z}} 426
{us} U7 Jt{u.}
This equation corresponds to the transformation relating {«,} to {u}, as specified
in Eq. 4.13. The coefficient matrix on the right-hand side represents [T]. Because
of the special form of [T] and of the orthogonality conditions (Eq. 4.23), [K,]
(Eq. 4.16b), and [M,] (Eq. 4.16¢) can be simplified.

Assuming a lumped-mass matrix ([M,] = [0]), the reduced equations of
motion (Eq. 4.14), using Eqs. 4.15b and 4.16a, equal

[[Q](l + 20i) — @?l1] | — O [M.][T,] }{{Z}}
D

— [T, J'[M,][®] (1 + 2Ct)([ch] + [KT:.)) {u}
o¥(M. ] + [T, ] IMT, (4.27)
_ { [ (P} }
[Tlc]T{Pl} + {Pc}

Once again, the band structure present in the original equations (Eq. 4.12) is
lost. If a consistent mass matrix is used, reference can be made to Section 8.2.5
(Eq. 8.39), where a special case of the substructure-mode synthesis is discussed
in another context,

Instead of using the mode shapes, other generalized displacements (shape
functions) could be used. They have to vanish on the boundary between two
neighboring substructures. The deflected shape of the built-in substructure
loaded by the expected dominant inertial loads could be selected. Assembling
these shape functions of the substructure j in [®/], Eq. 4.26 would still apply.
As the orthogonality conditions of Eq. 4.23 are no longer valid, the first sub-
matrix in Eq. 4.27 is changed to

(1 + 20D[PT[K.[@] — w?[PT[M ][] (4.28)

As the chosen generalized displacements will resemble the mode shapes, the
off-diagonal terms are small. The other submatrices and the right-hand side are
not affected.
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SUMMARY

. As the inertial forces depend on the displacements and are not a function of

their derivatives as in the case of the elastic forces, a coarser model can be
selected for the dynamic analysis than for the static one. In many cases only
a few vibrational modes, generally the lowest, are excited significantly. The
uncertainties of the dynamic load are generally larger than those of the static
one. Economic considerations also demand a simple dynamic model, if at all
possible.

. The frequency content and the spatial variation of the applied load influence

the dynamic model, in which all vibrational modes with nonnegligible gener-
alized modal loads have to be represented. The type of result also affects the
discretization: higher modes contribute more to local than to global results
and are also more important for accelerations than for displacements.

. A subsystem with a small mass can be decoupled from the structural model.

The motion at the support point of the subsystem is calculated first and can
be displayed in the form of an in-structure response spectrum. The subsystem
is then analyzed independently for this support motion, neglecting the
feedback from the subsystem to the structure.

. For a structure with a rigid base, even embedded, the applied seismic inertial

loads follow from using rigid-body kinematics from the three translational
and three rotational components of the scattered motion of the massless
base. This also applies for horizontally propagating waves. The resulting
simple spatial variation of the inertial loads excites only the zeroth and first
symmetric and antimetric modes of an axisymmetric structure. For a surface
structure with a flexible base subjected to vertically incident waves, the
applied inertial acceleration is constant throughout the structure. This excites,
for the horizontal and vertical earthquakes in an axisymmetric structure, only
the first and zeroth harmonics, respectively. For all these cases a simple
dynamic model thus results. Constraining the excited harmonics somewhat
allows, as an acceptable approximation, beams to be applied in the dynamic
model for seismic excitation. The latter are also used in practice to model
even box-type structures which deviate considerably from axisymmetry.

For the other cases of a structure with a flexible basemat, higher-order
harmonics are excited for seismic loads. This is the case for an embedded
structure or for a surface structure subjected to horizontally propagating
waves. Beams can be used only in exceptional cases.

Dynamic models are normally established directly. For an impact load which
is applied over a small area and whose load—time diagram exhibits significant
high frequencies, a very detailed discretization is necessary to be able to model
the higher modes accurately. For a box-type structure with a stiff base, a
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vertical beam (whose center of gravity does not have to coincide with those
of shear and mass and whose axis can exhibit discontinuities at the floor
levels) can often be used as the dynamic model for seismic excitation. In
frame-type structures with shear panels, the connecting floors can be assumed
to be rigid only in their planes. The mass is either lumped at the nodes by
inspection or by using generalized displacements.

7. Alternatively, the dynamic model can be derived from the detailed static
finite-element discretization systematically by reducing the number of
dynamic degrees of freedom. Two methods are described to achieve this
transformation: mass lumping, followed by static condensation and substruc-
ture-mode synthesis. In the latter, the amplitudes of the vibrational modes of
suitably chosen substructures are used as the dynamic degrees of freedom,
together with the displacements on the boundaries separating the substruc-
tures.

PROBLEMS

4.1. Figure P4-1a shows symbolically a structure (subscript s) with a component (sub-
script ¢) attached to it. The criterion on uncoupling of the latter can be defined as
a function of the mass ratio /1 = m./m, and of the frequency ratio @ = +/k,/m./
~'k,Jm,. Calculate the two natural frequencies @, and w, (nondimensionalized
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Figure P4-1 Uncoupling of subsystem. (a) Supporting system (structure) with
supported subsystem (component); (b) natural frequencies of combined system;
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4.2.

MODE SHAPE RATIOS

Figure P4-1 (Continued) (c) ratio of displacements.

with @, = ~/k,Jm;) and the corresponding ratios of the displacements u./u; of the
coupled system as a function of @ and 7. Plot w,/w, and @,/w; versus @ for
m = 0.01 and = 0.1 and, in addition, u/u, versus @ for the same two mass
ratios.

Results:
2
%‘-TZ =301 + @*( + m) F [T T @20 + MP — 407
Uct 1

u; 1 — off@id?)
Uy 1
Uy 1 — 03/(@id?)
The results are plotted in Fig. P4-1b and c.

As discussed in Sections 3.1 and 3.2, the free-field motion acts at the lower end
(i.e., the end that is not connected to the basemat of the structure) of a generalized
spring-dashpot system. To evaluate approximately the scattered motion (which
is equal to that of kinematic interaction) of a rigid surface structure subjected to
horizontally propagating waves, the dashpots can be omitted, and continuously
distributed springs with constant values can be selected.

For the quadratic rigid basemat of length 2a resting on distributed springs
with a constant k (stiffness per area), determine the amplitude of the scattered
motion uf caused by the free-field motion u’ with a particle motion in the direc-
tion of propagation (x-axis), whereby the apparent velocity is denoted as ¢,
(Fig. P4-2a). Plot the ratio u&/u} as a function of wajc,.

Solution:

The harmonic displacement of frequency @ propagating in the positive x-direc-
tion can be written as # exp [iw(t — x/c.)]. The amplitude describing the spatial
variation is thus equal to 7 exp (—iwx/c,). This is equivalent to ulfcos (@xjc, +
$)), where ¢ is the phase angle.
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Figure P4-2 Kinematic motion for horizontally propagating wave with horizon-
tal component coinciding with direction of propagation. (a) Rigid quadratic
basemat with continuously distributed soil springs beneath; (b) translational
component.

The amplitude «£ follows from Eq. 3.19, which, as a scalar relation, is equal
to
S H -IATS ,,bu,,

The term A7Sfuf is equal to the resultant ansmg from the forces of the springs
subjected to the prescribed support motion uf = uf and S, denotes the horizontal-
stiffness coefficient. This leads to

uf k4a k2au,, exp ( ) dx

wa
——f cos—dx—m Sm_c:
From the plot of uf/uf versus wa/c, (Fig. P4-2b) the self-canceling effect of the
free motion propagating under the structure is clearly visible. Calculating an

equivalent radius by equating the areas of the square and of the circle, the agree-



Chap. 4 Problems

ment with the exact solution in Fig. 7-30 for the circular basemat is shown to be
good. This is the case because, in the equation for u§, the dynamic stiffness and its
inverse both occur. The details of how the soil is modeled will thus have only a
small influence when calculating the scattered motion. Of course, the scattered
motion could also be calculated directly for the circular basemat, which involves

a Bessel function J; of order 1 and of the first kind:

uf = 1 f k2A/a% — x2ul, exp( ;cox) dx

kra?

Z‘; fJ —zcosc—adx—Z J,( a)

"

43

For the quadratic basemat with length 2a resting on distributed springs having

a constant spring constant k (stiffness per area), determine the amplitudes of the
scattered motion v§ and P2 caused by the free-field motion u! propagating with
the apparent velocity ¢, in the positive x-direction and whose horizontal particle
motion is perpendicular to this direction (Fig. P4-3a). Plot the ratio ayf/ul as a

function of wa/c, (see also Problem 4.2).

a)
4
A /y
Y IO / [«] "
/ / /
oA

S ke FEFY
Seasves

b)

-iaYg

0.6
0.4

o0z /\
2

-0.2

-0.4
-0.6

Figure P4-3 Kinematic motion for horizontally propagating wave with hori-
zontal component perpendicular to direction of propagation. (a) Rigid quadratic
basemat with continuously distributed soil springs beneath; (b) torsional com-
ponent.
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Solution:

1 (™ —i®
v = s Jl . k2auf exp (%) dx

analogous to equation for 5 (see Problem 4.2).

1
v = k8a‘/3J

+a

xk2aul exp (—iwx) dx

For the torsional component, S¥, is equal to the polar moment of inertia mul-
tiplied by k.

ays .3 . Wx .3 ¢, (c,, . Wa a)a)
= —iz— | xsin—dx = —i5 -2{-Z sin — — cos —
ul 2a% | Ca 2 wa\wa” ¢, s

The factor (—i) means that y¢ lags behind #J (and v¥) by 90°. From the plot of
—iays Jul versus wajc, shown in Fig. P4-3b, the significant torsional motion with

" which the symmetric basemat is loaded is visible. The maximum occurs for

44.

wajc, ~ 2. After calculating an equivalent radius by equating the polar moments
of inertia of the square and of the circle, the agreement with the exact values
shown in Fig. 7-31 for the circular basemat is seen to be good.

For the square basemat with length 2q resting on distributed springs having a
constant spring constant & (stiffness per area), determine the amplitudes of the
scattered motion wf and B¢ caused by the free-field motion with a vertical com-
ponent u propagating with the apparent velocity ¢, in the positive x-direction
(Fig. P4-4a). Plot the ratio af%/u} as a function of wa/c, (see also Problems 4.2
and 4.3).

Solution:

1 (™ —iw
w8 = k—4a2f k2au? exp ( éa x) dx

analogous to equations for u#¢ (see Problem 4.2) and for +§ (see Problem 4.3).

a)

Figure P4-4 Kinematic motion for horizontally propagating wave with vertical
component, (a) Rigid quadratic basemat with continuously distributed soil springs
beneath;
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Figure P4-4 (Continued) (b) rocking component.

1 te — i
B = ~ %423 ,L. xk2aul exp (—%) dx

a

For the rocking component, S&, is equal to the moment of inertia multiplied by k.

a Ca Ca

aBs .3 [° . wx o Caf Ca . Oa ®a
—@=1—2 xsm—dx=13—"(—" sm——cos——)
Uz a 0 C, wa

Apart from the sign, B¢ is twice as large as yZ. Comparing the plot of —iaff? /u{
versus wa/c, (Fig. P4-4b) with that of the exact solution after calculating an
equivalent radius (Fig. 7-31), the good agreement is apparent.

As illustrated in Fig. 3-19, the simple coupled system with one dynamic degree
of freedom used to analyze soil-structure interaction for seismic excitation (Fig.
3-18) can also be applied for a multistory building which responds predominantly
in the fundamental mode. The system is described by the fixed-base frequency w,
(= ~/k/m), the damping ratio {, the effective mass m, and the effective height A.
Verify that the following equations apply:

(; m$,)*
B 2;: m;d,?
; mdh;

- Zj: mj¢f

where m,, h;, and @, are the mass at story j, the distance of story j from the base,
and the (fixed-base) fundamental mode shape at story j, respectively.

4.5

m

h
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Solution:

To achieve the same interaction effects, the base shear H and the overturning
moment M must be equal for the two systems built in at their bases. For the
equivalent one-degree-of-freedom system,

H = kr = @*mr
M = hkr = @*hmr
apply, where r is the relative displacement. For the multistory building, {R} in

Eq. 2.6b is specified as
{R} = — [M]{e}#,

where {e} contains the value 1 for all horizontal degrees of freedom and zero for
all others. Not enforcing the scaling specified in Eq. 2.3a,

 {$YIMe}
Y = M)

results for the modal amplitude y. The corresponding global values are as follows:
H = 0¥} M@}y
M = w}{R MY}y

Equating the base shears leads to

g _ % m$,)?
{#YIM1d} > m b

while £ is determined by setting the overturning moments equal.

_ (IMIBYIMYE) _ (TIMI) _ m;$;h;
m{$} M $} (e IM 1} zj; e,

The discretization of certain structures can lead to a model that is supported in a
statically indeterminate way. As 4n example, the continuous bridge whose columns
are built in at the level of the girder is addressed for horizontal excitation with
an amplitude u, (Fig. P4-6). [If the columns are hinged (Fig. 3-19) and not built
in, the statically determinate model of Fig. 3-18 can be selected, which is examined
in depth in Section 3.4.] Assuming the girder to be rigid compared to the stiffness
of the columns results in the statically indeterminate model with one redundant
shown in Fig. P4-6b. The mass m with the total displacement amplitude #* can
move only horizontally without exhibiting rotation. The base has two degrees of
freedom, the horizontal translation with the amplitude «, and the rocking with the
amplitude ¢. The column of length 4 (which for the sake of simplicity is assumed
to be prismatic with the bending stiffness EI) has a static stiffness k (== 12EI/h3)
and hysteretic-damping ratio {. The fixed-base frequency is equal to

h

It is advantageous to split the total displacement amplitudes into their com-
ponents
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a)

Figure P4-6 Continuous bridge girder with built-in columns modeled as redun-
dant system with one dynamic degree of freedom. (a) Bridge; (b) dynamic model.
w = ug + u, + % +u
uy =u, + u,
where 4, is the amplitude of the base relative to that of the free field. The term
h¢/2 is the amplitude of the horizontal displacement caused by ¢ in the statically
indeterminate system, which does not result in a shear force in the column (but
in a constant moment), and  is the amplitude of the structural distortion. As

discussed in depth in Section 3.4, the horizontal-force amplitude of the soil is
approximated as
Py = kau, + cut, = k(1 + 20,0 + 2{,u,
where k; and c;, are the constants of the spring and the dashpot, respectively. The
ratio of the radiation damping of the undamped soil is denoted as {, that of the
material damping as {,. Analogously, for the moment amplitude of the soil
M, =k, + ;b = k, (1 + 2040 + 2,0
applies.
(a) Derive the equations of motion for harmonic response using the unknowns
u, u,, and h¢. Introduce the following natural frequencies:

~k
wf =
— ke
©OF = i

Express the coefficient matrix as a function of @,, w;, @,, @, {+, {4, {,and {,.
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(b) Proceeding as in Section 3.4, determine the properties of an equivalent one-
degree-of-freedom system: its natural frequency @, its ratio of hysteretic
damping {, and its excitation &,.

Results:
o 5 : _
Ss( +2Li) — 1 ~1 —1
1 Oh i+ 2 — 1 1
ol B 2 2L 1 -
i i 2
2 o L2201+ 2040 + 2,0)
ez + 20— 1 ~1 i w?
i + gz T2 — 1
u 1
u| )1 u
ho £
5 1
with
., 12EI
ST Km

(b) Neglecting products of the damping ratios compared to unity, the properties
of the equivalent one-degree-of-freedom system are derived as

11,1 3
&~ ol T T e ¥ 1207
= @2 3602w}
C—C—m(C—Cg—Cx)~m(C—C,—C¢)
. @2
llx =w—5:u,

4.7. Figure P3-11 shows the model of a rigid structure founded on flexible soil, which
results in a simple system for analysis. This discretization can be of practical use
in a preliminary analysis of a nuclear building which is very stiff and rests on
relatively flexible soil. A rigid structure can, however, also be assumed in situations
where, at a first glance, this would not be expected to be possible. It turns out
that the shell of a hyperbolic cooling tower, although its wall thickness is very
small compared to a characteristic length, can be modeled as a rigid body. This is
possible because the supporting columns are extremely flexible in the horizontal
direction. The shape of the first mode of the first symmetric harmonic (which
dominates the response for a uniform horizontal earthquake excitation) shown in
Fig. 4-14 of the tower of Fig. 4-13 demonstrates this fact. Thus the model shown
in Fig. P4-7a can be used.

The columns of the tower rest on separate foundations, which it is possible
to connect by a ring beam. As the separate foundations are quite far apart, they
can be regarded as independent of one another when calculating the dynamic-
stiffness coefficients of the total foundation. The horizontal-force amplitude P,
of the damped soil is expressed approximately as (see Section 3.4)

P, = khuo + cplt, = kh(l + 2Cxl + ZCgi)uo
where {, and {, are the ratios of the viscous radiation damping of the undamped
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Figure P4-7 Hyperbolic cooling tower modeled as rigid shell on flexible columns
founded on soil. (a) Dynamic model; (b) relative displacement of columns;
(c) total displacement at base and rocking; (d) equivalent natural frequency;

(e) equivalent damping ratio.
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soil in the horizontal direction and of the hysteretic-material damping, respec-
tively. Analogously, for the moment amplitude of the soil

M, =k + c,$ = k(1 + 2{4i + 2{,i)¢

applies. The amplitudes ¥, and @ correspond to the displacement of the base
relative to that of the free field and to the rocking, respectively. The columns are
modeled in the horizontal direction as a spring with a constant &, and a hysteretic-
damping ratio {,. The amplitude of the relative displacement between the upper
and lower ends of the columns is denoted as u.. In the vertical direction the columns
are assumed to be rigid. The shell is represented as a rigid body with mass m and
moment of inertia I. Its center of mass is located at a height % above the founda-
tion.
(a) Modify the harmonic equations of motion derived in Problem 3.11 to take the
flexibility of the columns into consideration. Use u,, k@, and u, as the un-
knowns. Besides @, and w,, introduce the natural frequency

The coefficient matrix is a function of @,, @y, @,, ®, I/A2m, {,, {,, {4, and {,.

() Use the same crude approximation of Egs. 3.65a and 3.65b and of Problem 3.8
to calculate the contribution of a separate foundation of radius Aa to the
total dynamic stiffness of the undamped soil.

8G Aa

ke=n

where 7 is equal to the total number of separate foundations and x; denotes
the distance from the center line. Introduce the following parameters: § =
w.alc,, @ = Aala, n, h = hla, i = m|(pa®), I/k2m, v, {., and {,. Express the
three equations of motion as a function of these parameters and of w/w..
(c¢) The significant relative displacement between the upper and lower ends of
the columns leads to large forces in the foundations, in the columns, and in
the lower edge beam of the shell. Hence, for increasing seismic loads, these
parts of the tower are the first whose design is governed by the loading case
of earthquake instead of by the wind. Plot |u,|/|#,| at resonance versus §
(0.05 < § < 10) for the following values, which correspond to the tower shown
in Fig. 4-13: h = 65.64 m, a = 58.54 m, Aa = 2.5 m, n = 36, m = 18.550 Gg,
I = 46,500 Ggm?, k., = 5.05 GN/m, {. = 0.025, v = 0.4, p = 2.4 Mg/m?,
and {, = 0.05. Determine the range of § for which the influence of soil-
structure interaction can be neglected by plotting the corresponding {u, + u,|/
|ug|and | A |/|u, | versus 5. Plot the properties of an equivalent one-degree-of-
freedom system @/w,, { which are determined from u«, at resonance.
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Results:
Dt +20) 1| ~1
@ -1 Dh(1 + 2 + 2, — 1
1 1 :
~1 u,
—1 U,y =
(220 + 28 + 2,0 — 1|(1 + 75 ||
Qe+ 2y — 1 | ~1
) —1 %;(2_8%(1 + 058532 + 2,i) 1
-1 ~1
: | ;
1
, _
[%2 T v)§2r712};1:1(1 " FL,,;)(I + §dwgci + 2(,:') . 1}(1 + W-Lm)_{

(¢) The results are plotted in Fig. P4-7b to e.

L

u,

|



FUNDAMENTALS
OF WAVE
PROPAGATION

5.1 ONE-DIMENSIONAL WAVE EQUATION
5.1.1 Significance of Wave Propagation

In the fundamental equation of motion of soil-structure interaction analy-
sis (Eq. 3.9), the dynamic-stiffness matrix [S&] (or [S4]) and the free-field
motion {uf} are the terms associated with the unbounded soil. Both can be
determined using the concepts of wave propagation in a continuum. Especially
the calculation of [S%] leads to a complex two- or three-dimensional problem
involving different types of waves. General procedures to determine [S§] and
{uf} are described in Chapters 7 and 6, respectively. They are based on the, in
general, three-dimensional wave equation, which is derived in Section 5.2.
Different types of body waves are identified in the same section. The correspond-
ing stiffness matrices for a layer and for a half-space can then be calculated
(Sections 5.3, 5.4, and 5.5). This allows the stiffness matrix of a site consisting
of layers resting on a half-space to be established, following the standard
assembly process of finite elements. The applications are described in detail in
Chapters 6 and 7.

5.1.2 Statement of Problem

Before deriving the wave equation in three dimensions, it is appropriate
to investigate the one-dimensional case, using the standard theory of the
strength of materials. The vital aspects of wave propagation can be clearly
established and their impact on the dynamic-stiffness matrix of the soil and on

114
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Figure 5-1 Dynamic stiffness and free field modeled as rod with exponentially
varying area and as prismatic rod, respectively.

the free-field motion studied. Consider the site consisting of layers resting on a
half-space shown in Fig. 5-1. The origin of the z-axis pointing downward is
located at the free surface. Material damping is at first disregarded. The vertical
free-field motion with the displacement amplitude w, (the subscript ¢ stands for
control motion) is assumed to be specified in the control point located on the
free surface. This motion shall be associated with vertically propagating com-
pressional waves (P-waves). To determine the free-field response w(z) at a depth
z, a prismatic rod representing a column of soil can be examined. A rigid (mass-
less) base of area A, also rests on the free surface of the site. The vertical dynamic-
stiffness coefficient S, (= S%,) of the infinite soil relates the vertical-displacement
amplitude w, to the vertical-force amplitude P,

P,=S,w, (5.1)

To take the load distribution arising from P, approximately into account, the
soil can be modeled crudely as a vertical rod with an area A(z) increasing
exponentially with depth

A(z) = A, exp (%) (5.2)

The length f represents the depth at which the area equals 4,e. Only amplitudes
of normal stress ¢ distributed uniformly over the cross section arise. For a
layered site, the rod consists of elements with varying moduli of elasticity E
which are selected equal to the constrained moduli of the layer. This representa-
tion can be used to model a two- or a three-dimensional problem. The length
fis determined in such a way as to achieve the same static-stiffness coefficient
in the vertical direction for the (three-dimensional) site and for the rod. For
f— oo, the prismatic rod results for any finite value of z. The model used for
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the analysis of the free-field response is thus contained as a special case in the
formulation. It should be realized that the model for the free-field analysis is
exact for vertically incident waves, while that for the calculation of the stiffness
coefficient is only approximate, The horizontal direction could also be modeled,
replacing the area A by the shear area and E by the shear modulus. The rocking
behavior could also be approximately represented by selecting two vertical bars
(with the area A4) spaced apart at a suitable selected distance.

5.1.3 Equation of Motion

The dynamic equation of motion of this rod with variable area is derived
for harmonic excitation with frequency w as follows. The unknowns vary as
exp (iwt). An infinitesimal element of length dz is shown in Fig. 5-2. Equilibrium
is formulated as

—0A -+ (6 + 0,,dz)(4 + A,,dz) + o*wp(d + 34,,dz)dz =0 (5.3)

4
i oxp(F)
Yoxp (1%!)

Figure 5-2 Rod with exponentially varying area (infinitesimal element and
layer).

A comma denotes the derivative. The harmonic inertial load is calculated on
the basis of the average area. The density is denoted by p. Equation 5.3 reduces
to

Ao,, + 0A,, + 0*wpA =0 (54)

after neglecting terms in (dz)?. Introducing the stress-displacement relationship
of the theory of the strength of materials for a rod

o = Ew,, (5.5)
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in Eq. 5.4 leads to the equation of motion of the rod with variable cross section

4, w*
Wes + W + o7 w=20 (5.6)
where the velocity of the longitudinal waves in the prismatic rod c, is defined as
E
¢t = 2 5.7

Specializing for the exponentially varying area (Eq. 5.2) and defining the dimen-
sionless frequency a, as

%z% (5.8)
Il
Eq. 5.6 is transformed to
1
Wizz + TW’z fzw =0 (59)

For f — oo, the standard (one-dimensional) wave equation is recovered

2

Waee + rw =0 (5.10)
1

To solve Eq. 5.9, a solution for w of the form exp (iyz) is considered. As wave
propagation is envisaged, i is explicitly included. This results in the quadratic
equation

; 2
w—%_%zo (5.11)
with the solution
i i
Y= 2f + 27,\/1 — 4aq? (5.12a)
i i
?2“7—27- 1 —4a? (5.12b)
The displacement amplitude w is thus equal to
w = aexp(iy,z) + bexp (iy,2) (5.13a)
or
W:aexp( M)+bexp< —’\/-17::4_'_%) (513b)

where a and b represent the constants of integration.
5.1.4 Types of Waves

As material damping is disregarded, ¢, and q, are real. For 1 — 4a2 > 0
(i.e., a, < 0.5) no wave propagates along the z-axis. The motion diminishes
exponentially with depth. For higher frequencies, a, > 0.5, this equation is
reformulated by changing the sign of the square root as

= asn(-5)on(-9) +bon(—F)on(+2) 619
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where the phase velocity ¢ equals

— 2aocl
¢ = T =1 (5.15)
To interpret Eq. 5.14 physically, it is recalled that the harmonic motion is
represented as exp (+iwr). An expression of the form exp [io( t — z/c,)]
represents a wave propagation in the positive z-direction with the apparent veloc-
ity ¢,. The first term can thus be interpreted as such an outgoing wave with
¢, = ¢, whereby its amplitude (specified at z = 0 as a) diminishes exponentially
with depth. Analogously, the second term with the amplitude b represents a
wave propagating with the same velocity ¢ in the negative z-direction. This
incoming wave exhibits the same variation of its amplitude with depth. The
phase velocity ¢ depends on @, and thus on the frequency . This means that an
harmonic wave with frequency @ will only propagate at a specific apparent
velocity ¢, (= ¢ for zero material damping, governed by Eq. 5.15). Consider,
for example, a wave consisting of the motions of two distinct frequencies. As
each component will propagate with its own individual apparent velocity, the
motions will become increasingly out of phase. The original shape of the wave
will become distorted. The motion is thus dispersive. For a, = 0.5, ¢ equals
infinity. For increasing w, ¢ decreases and converges to ¢, for @ — co. This is
shown in Fig. 5-4b (curve { = 0 for no material damping), where c,/c, is plotted
versus a,. This representation is called a dispersion curve. The frequency at
which the motion ceases to propagate is called the cutoff frequency (a, = 0.5).
For the special case of the prismatic rod, no cutoff frequency exists. For the
whole frequency range, the motion will propagate with a (frequency-independent)
¢, = ¢;. No dispersion and no diminishing of the motion with depth occur for
the prismatic rod.
Many other dynamic systems exhibit a cutoff frequency below which no
waves propagate. See Problems 5.1, 5.2, 5.3, and 5.4.

5.1.5 Dynamic-Stiffness Matrix of Finite Rod

The dynamic-stiffiness matrix of a rod element of length d representing a
homogeneous layer of soil is derived next (Fig. 5-2). A local coordinate axis
Z with the origin located at the top interface, at node 1, pointing downward,
(Z = z — z,) is introduced, where the area of the rod equals 4, exp (z,/f). The
straightforward procedure for calculating the dynamic-stiffness coefficients
consists of selecting the integration constants a and b in Eq. 5.13 to satisfy the
boundary conditions at the two interfaces, at nodes 1 (£ = 0) and 2 (£ = d).
For instance, for the coefficients S;,, S,; of the first column of the dynamic-
stiffness matrix, these are

w, =1 (5.16a)
w, =0 (5.16b)
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Substituting Eq. 5.13a in Eq. 5.5 leads to the stress amplitudes o
o = iEay, exp (iy;2z) + IiEb y, exp (iy,z2) (5.17)

The amplitudes o, and o, at nodes 1 and 2 then follow by setting 7 = 0 and
= d, respectively. The corresponding force amplitudes are equal to

P, = —0, A4, exp (%) (5.18a)
P, — 0, exp (é}”_d) (5.18b)

As P, and g, act in opposite directions, a minus sign is introduced in Eq. 5.18a.
The dynamic-stiffness coefficient S,, is equal to P,, S,, toP,. The other coeffi-
cients, S,, and S,,, follow analogously, if one replaces Eq. 5.16 by

wy =0 (5.19a)
w, =1 (5.19b)
This procedure can be modified slightly by deriving a transfer matrix as an

intermediate step. The displacement and stress amplitudes at node 1 (Z = 0)
follow from Egs. 5.13a and 5.17 as

wi| 1 1 a 5.20
{01}_[@1 iE?j{b} (5.20)

Expressing the corresponding values w, and o, at node 2 as a function of ¢ and
b and then eliminating ¢ and b using Eq. 5.20 results in the transfer matrix,
which is not symmetric.

o)

(P

o [n exp(irid)—7: expiysd) | —exp (1:d) — exp (i9,d)] HW}
Y2 — "

iEy 7, [exp(iy,d) — exp(iy.d)]i —y, exp(iy,d) + ¥2 exp(iy.d)\o,
(5.21)

It relates the state vector with elements w and ¢ at node 1 to that at node 2.
Performing a partial inversion pivoting on the element in the first row and in
the second column leads to '

(B _ iE
o,]  €xp (iy.d) — exp (iy.d)

[72 exp (iy,d) — 7, exp (iJ’zd)E P1— 72 :HW1}
(72 — P exp [i(p, + v2)d] |7: exp (iy,d) — . exp (iy,d) | (w.
(5.22)
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Finally, substituting Eq. 5.18 in Eq. 5.22 results in
{Pl} _ E4, exp (z,/f) |:§11 S‘lzj|{wl} (5.23)
P, f Sa1 S ]lw,

As will be shown later (Eqgs. 5.29 and 5.31), the factor EA, exp (z,/f)/f is equal
to the static-stiffness coefficient of the infinite rod at node 1. The matrix [S]
represents the nondimensionalized dynamic-stiffness matrix of the rod element.

S, — ifli€Xp (l:}’zd) — V3 €Xp (@i,d) 5.24
1= e Grid) — exp (i) (5-:242)
S _ & _3; Y2 — %

Si2 = S0 = 1 G5 :d) — oxp (:d) (5.24b)
S d\ 7, exp (ip,d) — y, exp (iy,d)

Su=if o0 (7) G i = e (o (5.24¢)

As expected, the dynamic-stiffness matrix is symmetric. A formulation (not using
the stiffness matrix) based on the nonsymmetric transfer matrix (Eq. 5.21)
leads to larger storage requirements and computational operations. Substituting
the definitions of , and y, (Eq. 5.12) in Eq. 5.24, alternative expressions follow,
which are adapted to the two ranges of a,. For instance, for S,, with the dimen-
sionless length a = d/f:

a,<0.5: Si =4[ 1+ ./T—4ak coth (—%‘—Jm)] (5.252)
a,>05: 51 =4[ 1+ /AaE 1 cot (Fvaz=T1)] G2t

For all values of a,, the stiffness coefficient S,, (and analogously the others)
is real when no material damping is present. This is to be expected, recalling the
definition of the dynamic-stiffness matrix of a bounded domain (Eq. 3.1), as
the static-stiffness matrix [K] and the mass matrix [M] are real. The applied
displacement and the resulting force are thus always in phase (or 180° out-of-
phase). This also holds when the thickness of the layer d approaches infinity.

5.1.6 Dynamic-Stiffness Coefficient of Infinite Rod

Besides the dynamic-stiffness matrix of the finite-rod element, that of the
infinite rod representing the homogeneous half-space is also needed to model a
realistic site. For material damping equal 0, it cannot be derived for the case
a, > 0.5 as a limiting case of that of a rod element, letting d — oo (and thus
also & — oo). This is apparent from Eq. 5.25b. As the cot function (of a real
argument) is periodic with values ranging between —oo and oo, any value
could result.

To be able to understand this behavior, the solution of the wave equation
at infinity is addressed. The infinite rod represents an unbounded domain. Some
condition has to be imposed on the solution at infinity. It is not sufficient just
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to require the solution to go to zero at infinity. This is verified as follows. From
Eq. 5.14, it is deduced that both waves die out at z = oo (i.e., w — 0). It is
possible to enforce w = 0 at z = z,.

W = a exp ( 2f)|:exp ( ’sz) — exp < 21wz1> exp (zwz):l (5.26)

This solution is not identical to zero, although it tends to zero at infinity and
vanishes at z = z,. This will result, for example, in a nonzero stress g, at z = z,,
which is not acceptable. The solution is not unique. The solution of the wave
equation specified in Eq. 5.14 has two independent parts. What is needed is a
stipulation, called the radiation condition, which will suppress one of them,
leading to a unique solution.

When applying a displacement at the top of the infinite rod, no incoming
wave exists. Thus, setting b = 0 in Eq. 5.20 leads to

w,=a (5.27a)
o, = iEy.a (5.27b)

Eliminating a from Eq. 5.27 and substituting the resulting expression for o, in
Eq. 5.18a leads to

P, — —iEA, exp( f)ylw1 (5.28)

or, using the same factor to nondimensionalize as for the layer,

P, = M,_e’?ﬁéx_/_f)glwl (5.29)

The nondimensionalized dynamic-stiffness coefficient S, of the infinite rod
equals

8= —ify (5.30)
Finally, substituting Eq. 5.12a leads to
$, =401 + /T=4a2) (5.31)

For the static case (a, = 0), $; = 1 results. The factor E4, exp (z,/f)/f employed
to nondimensionalize the dynamic-stiffness coefficient in Eq. 5.29 is thus the
static-stiffness coefficient of the infinite rod. In S, the dynamic behavior is
captured. For a, < 4, S, is real, while for a, > 0.5 a complex S, results. To
gain physical insight, the generally complex S, is split up into its real and
imaginary parts:

S, =k, + ia,c, (5.32)

The letter k, is thus equivalent to the spring coefficient. The first term represents
the force which is in phase with the displacement. The force ia,c,w, arising from
the second term = (f/c)ec,icow, = (f[c)c,w, can be interpreted as a damping
force, with the damping coefficient being proportional to c,. (For the sake of
conciseness, ¢, is henceforth called the damping coeflicient.) This damping force
is 90° out of phase. The dynamic-stiffness coefficient of the infinite rod can thus
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be visualized as a generalized spring, consisting of a spring and a dashpot, with
coefficients which are a function of the frequency. For the two ranges of a,, ky,
and ¢, are determined as (Egs. 5.12a and 5.30)

0, <0.5: ky =31 + T —4ad) (5.333)
e =0 (5.33b)
a,>05: k=4 (5.34a)
¢, = J 1 — a% (5.34b)

The spring coefficient k; and the damping coefficient ¢, are plotted as a function
of frequency a, in Fig. 5-3. A logarithmic scale is selected on the abscissa. Below
the cutoff frequency a, = 0.5, no damping exists. This general trend is typical
and also applies to other infinite domains. For increasing frequency, &k, dimin-
ishes and ¢, increases.
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Figure 5-3 Dynamic-stiffness coefficient, without damping.
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For a prismatic rod,

IA;: — peis (5.35)

results. A dashpot with a damping coefficient (per unit area) pc; represents the
dynamic stiffness in this case.

5.1.7 Rate of Energy Transmission

The damping coefficient c, is a measure of the radiation of energy of the
outgoing waves. The rate of energy transmission N through the interface at
node 1 is defined as the product of the real part of the force P, exp (iwt) and of
the real part of the velocity w, exp (iwt), averaged over a period 2z/w:

-2 f OZW Re [P, exp (iwf)] Re [, exp (ioor)] dt (5.36)
The two factors equal
Re [P, exp (iwt)] = Re(P,) cos wt — Im (Py) sin wt (5.37a)
Re [w, exp (iwt)] = Re (W) cos ot — Im (,) sin wt (5.37b)
Substituting Egs. 5.37 in Eq. 5.36 and integrating over time leads to
N = }[Re (P,) Re (w,) + Im (P,) Im (,)] (5.38)

The scalar N is thus proportional to the scalar product of the two vectors of the
amplitudes P, and w,. With

Wy = iow, = —o Im (w,) + iw Re (w,) (5.39)

Re (W;) and Im (w,) are identified. Analogously, using Egs. 5.29 and 5.32,
Re (P,) and Im (P,) follow from

P, = E‘izﬁx?_(zif_)(kl + ia,c)[Re (wy) + i Im (wy)] (5.40)

Substituting in Eq. 5.38 results in

N = @E4, exp (21/]) 5 Gl g, w2 (5.41)
where |w,|? = Re? (w;) + Im? (w,) is the square of the (absolute) amplitude
of w,. The spring coefficient k, does not appear in the formula for N. The rate of
energy transmission is thus proportional to the damping coefficient ¢,. For the
frequency range below the cutoff frequency a, = 0.5, no energy is radiated.
The mechanism with the damping coefficient ¢, is often referred to as radiation
damping. It also occurs when no material damping is present.

5.1.8 Material Damping

To demonstrate the changes in the salient features by introducing material
damping, the rod with exponentially varying cross section can again be used.
All formulas apply if the real modulus of elasticity E is replaced by the complex



124 Fundamentals of Wave Propagation Chap. 5

value E*:

E* = E(1 + 28 (5.42)
where { is the damping ratio. This concept follows from the correspondence
principle discussed in Section 2.4 (Eq. 2.14). It should be noted that E* enters
directly, for example, in the factor used to nondimensionalize the stiffness
matrix (Eq. 5.23) and also indirectly, through the longitudinal-wave velocity
¢ (Eq. 5.7), in the nondimensional frequency a* (Eq. 5.8). The complex values

equal 4
¥ = cn/1 + 20 (5.43)
a¥ = ﬁ (5.44)
In the equation of the displacement amplitude w (Eq. 5.13b), the expression
/1 — 4a*? arises. Using Eq. 5.44 and for small {, 1 — 4a*? is approximated as

1 —4a¥* ~ 1 — 4a? + 8a{i (5.45)

While Re (1 — 4a*?) = 0, depending on whether a, = 0.5, theterm Im(1 — 4a*?)
~ 8a2{ is always positive. The complex number 1 — 44*? thus lies either in the
first or second quadrant of the complex plane. The square root will always lie
in the first quadrant (i.e., Re /1 — 4a¥? > 0, Im /1 — 4a** > 0). One part
of the exponential function in the first term of Eq. 5.13b (associated with the
outgoing wave) is reformulated as

exp <-— /1 —4a? ;f4a:,"22> = exp (_R—e */12; 4a,’,“z> exp (—i———————————lm Y 21f— 4“‘3"22)

(5.46)

The second factor on the right-hand side indicates that a wave propagates for
all frequencies (in the positive z-direction). Formulating this factor as
exp (—iwz/c,), the (real) apparent velocity ¢, follows as

2a,c,

c, = m (547)
To eliminate f, use is made of Eq. 5.8. The ratio ¢,/c, depends on the dimension-
less frequency a, and on the damping ratio {. This dimensionless apparent
velocity is shown for { = 0.05 and 0.20 in Fig. 5-4. Below a, = 0.5, ¢ /c, is
very large (Fig. 5-4a). Above, the ratio hardly depends on {. No cutoff frequency,
as in the undamped case, thus exists. The first factor in Eq. 5.46 is associated
with an (additional) attenuation of the motion. For a distance z equal to the
wavelength A = 2nc,/w, the (real) additional decay factor per wavelength &,
caused by material damping results from the first factor, also using Eq. 5.47, as

Re /T —4aF
5, = exp(—2n e ) (5.48)

Analogously, the second term in Eq. 5.13b represents an incoming wave propa-
gating with the same apparent velocity ¢, attenuating with the same decay factor
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Figure 5-4 Dispersion. (a) @, < 0.5; (b) a, > 0.5.

d,. The change in sign reflects the fact that the wave travels and thus attenuates

in the negative z-direction.
For the damped case, the phase velocity ¢ defined in Eq. 5.15 is complex:

2a,c
c= ,\/—Ic_zl:‘z=l—‘-=l (5.49)

It is algebraically straightforward to express c, and é, as functions of Re ¢ and
Ime.

_ el
‘a= Re (@) (5.50)
J, = exp [—27:{{2 gg] (5.51)

For a wave propagating in a prismatic rod, ¢ = c¥. As is easily derived from
Eq. 5.43, Im (c¥)/Re (c}) = { (for small {). Thus the ratio Im (c)/Re (c) appear-
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ing in Eq. 5.51 can be interpreted for the rod with exponentially varying area
as the effective damping ratio. This ratio is plotted in Fig. 5-5 for { = 0.05.
Very large values are obtained for a, < 0.5, resulting in strong attenuation for
this range of frequencies. It follows that below the cutoff frequency a, = 0.5
which exists for the undamped case, the motion in the damped rod is only of
academic interest.
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Figure 5-5 Attenuation.

The dynamic-stiffness coefficient of the infinite rod with material damping
follows from Egs. 5.29 and 5.31. Using the same (damping-independent) factor
to nondimensionalize the coefficient (Eq. 5.29), S, follows as

S, =41 + 2D + /T—4aF) (5.52)

It is important to note that the dynamic-stiffness coefficient of the undamped
case cannot just be multiplied by the factor 1 + 2{i to determine that of the
damped case. As in the undamped case, S; can be split up into its real and imagi-
nary parts as defined in Eq. 5.32. It should be observed that a, and not a* appears
in this formula. This results in the (real) spring and damping coefficients k, and
¢;. The formulas apply for the whole range of frequencies.

ki = }(1 + Re /T =42 — 20 Im /T — 4a*?) (5.53a)
€ = zia(zg + 2L Re /T — 4a® + Im /T — 4a¥?) (5.53b)

The coefficients &k, and ¢, depend on a, and {. A damping force exists for all
frequencies. Introducing damping increases ¢, as expected (especially around
a, = 0.5 and below) and decreases k, in the higher-frequency range. Even nega-
tive values of k, can arise for large a, and {. In Fig. 5-6, the (dimensionless)
dynamic-stiffness coefficient of the infinite rod is plotted as a function of a,
for a damping ratio { = 0.05. The result of the extreme case { = 0.20 is also
shown. For comparison, the solution for { = 0 is indicated as well.
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Figure 5-6 Dynamic-stiffness coefficient, with damping.

The rate of the energy transmission N can still be calculated by applying
Eq. 5.41. The appropriate damping coefficient c, is to be used. Energy is radiated
for all frequencies.

Applying the correspondence principle, the dynamic-stiffness matrix of a
damped-rod element follows directly from Egs. 5.23 and 5.24. Using the same
factor to nondimensionalize as in the undamped case, for example, S, is
specified after substituting the definitions of y, and y, (Eq. 5.12) as

81

e (W

where a = dlf.
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5.1.9 Convergence of Dynamic-Stiffness Coefficient
of Finite Rod to That of Infinite Rod

When damping is present, the coefficient S,, of the finite-rod element
converges for d — co (and thus & — o0) to the dynamic-stiffiness matrix S,
of the infinite rod. As Re /1 — 4a** > 0, as discussed above,

exp(%‘z‘—A/l - 4a;“2> = eXp(—%—Re JI= 4aj,"2) exP(—i% Im /T — 4a_:<2)
(5.55)

converges to zero for the limiting case of & — oo. The other term in the fraction
involving the exponential function equals —1, leading to (Eq. 5.54).

5, =X 20 4 T=aa) (5.56)

®— o0

This expression is equal to S, as is apparent from Eq. 5.52. This means that in
the limit (¢ — oo), the finite rod with node 2 fixed (w, = 0) leads to the same
force amplitude P, when excited by a displacement amplitude w, as the infinite
rod under the same excitation. The wave propagating in the positive z-direction
is reflected at node 2 and propagates back in the negative z-direction, attenuating
exponentially with the distance traveled (first factor in Eq. 5.46). For a sufficiently
large length d of the rod element the decay of this latter wave is so pronounced
that from a practical point of view, no stress is generated in node 1 by this wave.
Only the other wave, which is the outgoing wave, leads to stresses in node 1.
This is obviously the same wave pattern as that one enforced when deriving S,
directly.

The length d of the finite rod has to be selected as quite large and depends,
not surprisingly, on the frequency investigated and on the chosen damping
ratio. Analogously as for S, in Eq. 5.32, S, can be split up into its real and
imaginary parts k,, and a,c,,. The ratio of the spring coefficient of the finite
rod k,, and that of the infinite rod &, is plotted versus the dimensionless length
o in Fig. 5-7a. The same representation for the damping coefficients ¢,,/c, is
shown in Fig. 5-7b. The damping ratio { equals 0.05. Convergence is reached
when the ratio equals 1. As expected, convergence is obtained for a much smaller
&, when a, = 0.4 (thus below the cutoff frequency a, = 0.5 of the undamped
case) than for a, = 0.6, where, even for { = 0, waves occur. It is interesting to
note that k,,/k, exhibits larger oscillations than ¢,,/c, does. The same study of
convergence is presented for ¢, = 1 and = 5in Fig. 5-8. As expected, the oscilla-
tion increases for these higher frequencies. For k,,/k,, even the wrong sign can
result for an ¢ that is too small. For certain values of a, selecting a larger length
results in a ratio that deviates more from 1. This means that increasing the dimen-
sions of the finite-element mesh can also lead to a larger error. Increasing { to
the value 0.20 improves the properties of convergence, as is visible for g, = 1 and
= 5in Fig. 5-9. However, convergence is achieved to the value of the dynamic-
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stiffness coefficient of the infinite rod corresponding to the selected damping
coefficient. This value depends quite strongly on the damping coefficient {
(Eq. 5.53), as is apparent from Table 5-1.

TABLE 5-1 Dynamic-Stiffness Coefficient of the Infinite Rod

Damping Ratio, {

Dimensionless 0 0.05 0.20
Frequency,
a, kq c1 k1 c1 ki c1
0.40 0.80000 0.00000 0.80114 0.26613 0.81217 1.04458
0.60 0.50000 0.55277 0.52083 0.64343 0.57111 0.98962
1.00 0.50000 0.86603 0.47120 0.91795 0.38837 1.09580
5.00 0.50000 0.99499 0.25408 1.00625 —0.46612 1.05436

5.1.10 Free-Field Response

Returning to the task of determining the free-field motion w(z) for a
specified control motion w, at the free surface, the dynamic-stifiness matrix of
the rod element for f— oo is developed. Employing Egs. 5.23 and 5.24 for
this special case leads to

P, cos —c%d —1 w,
E*4, o 54 (5.57)
~ sin (wd/c ) ¢ w ’
P, —1 cos —c—gd W,
1l

Assuming a homogeneous site, node 1 can be selected at the free surface in the
control point and node 2 at the depth d (Fig. 5-1). (By assembling the stiffness
matrices for all rod elements located between the free surface and the depth z
and by eliminating all intermediate degrees of freedom, Eq. 5.57 is easily gen-
eralized. See Section 6.2 for details.) At the free surface w, equals the control
motion w,, which is denoted as w,, the displacement amplitude at the top of the
site. The equation P, = 0 also applies. The displacement amplitude w, which
equals w, (the letter b stands for base), follows from the first equation of Eq. 5.57
as

W, = COS j—;-d W, (5.58)
1

The subscripts 7 and b are introduced to achieve consistency with the nomen-
clature used in Chapter 6. For damping equal to zero, w, is zero for w,d/c; =
@Qj— Dn/2,j=1,2,...,thatis, for

o, = 2—1-2”—1- 7 (5.59)



132 Fundamentals of Wave Propagation Chap. 5

in other words, for the natural frequencies of the soil column of depth d fixed at
its base. The amplification within the site from the top of the base can be defined
as the ratio of the absolute values of the displacement amplitudes |w,|/|w,|.
This amplification is plotted in Fig. 5-10 versus (another) dimensionless fre-
quency wd/c,. The damping ratio { = 0.05 is selected. From a practical point of
view, the dips still occur at the natural frequencies of the soil column, but the
corresponding value is no longer zero, because of the influence of damping.
It is apparent that the frequency content of a transient motion is strongly affected
by varying the depth.

™
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Figure 5-10 Amplification within site, { = 0.05.
5.1.11 Dynamic-Stiffness Coefficient of Site

The other task, the calculation of the dynamic-stiffness coefficient S, of
the infinite soil, has already been discussed. For a homogeneous site, .S, is
equal to the dynamic-stiffness coefficient of the infinite rod S,. For a layered site,
the dynamic-stiffness matrices of the rod elements and of the infinite rod (repre-
senting the half-space on which the layers rest) are assembled. Eliminating all
degrees of freedom with the exceptions of that at point O results in S,. This is
discussed in detail in Section 7.2.

Finally, it should be stressed that an actual layered site should not be
modeled with this one-dimensional model consisting of a rod with exponentially
varying cross section. It is introduced only to discuss the salient features of
wave propagation which will also appear in the two- and three-dimensional
models but which are much more complicated to treat mathematically. In
Problems 5.5 and 5.6, a conical shear beam is examined which can be used to
calculate approximately the dynamic-stiffness coefficients in the horizontal and
twisting directions. A similar model also exists for the rocking direction.
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5.2 THREE-DIMENSIONAL WAVE EQUATION
IN CARTESIAN COORDINATES

In the following, the well-known fundamental equations of elastodynamics are
summarized. This allows the nomenclature to be defined. Only those aspects
are discussed that are used directly in Chapters 6 and 7. In this section an
isotropic homogeneous elastic medium is assumed at first. Hysteretic damping
is introduced at a later stage.

5.2.1 Equation of Motion in Volumetric Strain
and in Rotation Strains

For harmonic excitation with frequency @ the three-dimensional dynamic
equilibrium equations in Cartesian coordinates x, y, z are equal to

Ouxt Tayy + Tazoz = — pO°u (5.60a)
Tyxx + a5, + Ty, = —‘PCOZU (560b)
Tox,x + Toy v + 0,,:— _PCOZW (5.60C)

No body forces are assumed to act. The normal- and shear-stress amplitudes are
denoted as o and T, respectively. As usual, the first subscript denotes the direc-
tion of the stress component, the second the direction of the normal of the infini-
tesimal area that the stress component acts on. The displacement vector has the
component amplitudes u, », and w. The letter p represents the mass density.
A comma denotes a partial derivative. All amplitudes are a function of x, y,
and z.
The strain-displacement equations are formulated as

€, = U, (5.61a)
€,=17, (5.61b)
€, =W, (5.61c)
Pay = Uy 1 s, (5.61d)
Vir = Uy + Wy (5.61¢)
Py = Uy, + W,y (5.61f)

The component amplitudes of the normal and shear strains are denoted by € and
y, respectively.
Finally, Hooke’s law, the constitutive equation, is specified as

€, = %(ax — Vo, — Va,) (5.62a)

6, = 2(—vo. + 0, —v0,) (5.62b)
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€, = %(—vax — Vo, + ag,) (5.62c)
Var = (5.62d)
P = 2 (5.62¢)
P =% (5.62f)

The shear modulus G can be expressed as a function of the modulus of elasticity
E and Poisson’s ratio v:

_ E
2T+
The surface-traction vector with component amplitudes ¢,, t,, and ¢, expressed
in the global-coordinate system acting on an infinitesimal element with a unit
normal vector with components n,, n,, and n, follows as

G (5.63)

t,=n,0,+n1,, + nr, (5.64a)
t, = N2y + 1,0, + N7, (5.64b)
t,=n,1,, -+ n1, -+ no, (5.64c)

The 15 components of the (symmetric) stress and strain tensors and of the
displacement vector are related by the 15 equations of Eqgs. 5.60, 5.61, and 5.62,
which can be solved by taking the boundary conditions into account. The latter
will enforce prescribed displacements and surface tractions (Eq. 5.64). Eliminat-
ing the strains from Eqs. 5.61 and 5.62 and substituting in Eq. 5.60 results in
the three equations of motion expressed in the displacements and their deriva-
tives (up to the second). All boundary conditions are also easily expressed as a
function of the displacements and their derivatives (substituting in Eq. 5.64).
The three displacements are coupled in the equations of motion (see Problem
5.7). They can be uncoupled by eliminating two displacements. The resulting
equation is, however, of the fourth order. To avoid this, and at the same time to
be able to identify the different types of waves, new variables are introduced:
the volumetric strain with amplitude e and the rotation-strain vector {Q} with
the amplitude components Q,, Q,, and Q,. These are defined as

e=u,, + v, + w, (5.65)
and as
Q, = tw,, —v,.) (5.66a)
Q, = {u,, — w,,) (5.66b)
Q, = (v, —u,) , (5.66¢)
Since
Q..+Q,,+Q ,=0 (5.67)

four equations (Eqgs. 5.60 and 5.67) exist for the four unknowns (e, Q,, Q,, Q).
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Using the new variables, the three equations of motion (Eq. 5.60) are
rewritten as

(A -+ 2G)e,, + 26(Q,,, — Q, ) = — pa’u (5.682)
(A + 2G)e,, + 26, , — Q,..) = — pw’v (5.68b)
(A + 2G)e,, + 2G(Q,. , — Q, ) = —po’w (5.68¢)

where the Lamé constant A is expressed as

. vE
A=Trwa—m (5.69)
Eliminating the rotations by differentiating Eq. 5.68a with respect to x,
Eq. 5.68b with respect to y, and Eq. 5.68c with respect to z and adding the
three relations results in

(A + 26)(e, . + €y, + €,,;) = — pade (5.70)

which is rewritten as
2

Vie= —2 ¢ (5.71)
cP
The Laplace operator of a scalar a is denoted as VZa (= a,,, + a,,, -+ a,..).
The variable ¢, which will later be identified as the dilatational wave velocity
is specified as
2 A+ 2G
3 ="==
P
Eliminating the volumetric strain by differentiating Eq. 5.68¢ with respect to y,
Eq. 5.68b with respect to z, subtracting the two expressions, and noting that
the derivative of Eq. 5.67 with respect to x also vanishes leads to

(5.72)

G(Q,, xx + Qs yy + Qi) = —p’Q, (5.732)
Analogously,

G(Qy, xx T Qy, w T Qy. zz) - —pa)zﬂy (5-73b)

G, . + Q. + Q..0) = —p0*Q, (5.73¢9)

follow. Introducing c,, which will be interpreted below as the shear-wave
velocity, defined as

¢t = % (5.74)
Eq. 5.73 is rewritten as
V2(Q) = ~_‘f_:{9} (5.75)

The equations of motion (for harmonic excitation) are specified in Eq. 5.71 with
the amplitude of the volumetric strain e as the unknown and in Eq. 5.75 with
the rotation-strain-vector amplitude {Q}. The components of the latter have to
satisfy Eq. 5.67. These wave equations are linear partial differential equations
of the second order.
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5.2.2 P-Wave

The solution of Eq. 5.71 with one variable is addressed first. The result is
displayed in Fig. 5-11a. By substituting the trial function

e= 12 g exp[ @ (—1x— 1Ly — l,z)] (5.76)
cp CP

glg_ascnou
» PROPAGATION

P-WAVE

WAVE
~ 7 { FRONT

SV - WAVE
DIRECTION

i\ OF
- PROPAGATION
SH - WAVE

WAVE
FRONT

Figure 5-11 Displacements associated with body waves. (a) P-wave; (b) S-wave.

it is verified that the wave equation is satisfied, provided that the equation
1242 = G717

holds. The three scalars /,, /,, and /, may be considered as the direction cosines
of a straight line. To interpret the exponential function in Eq. 5.76, it is recalled
that the harmonic motion is represented as exp (+iw?). An expression of the
form exp [ie(r — s/c,)] represents a wave propagating in the positive s-direction
with the velocity ¢,. Comparison with Eq. 5.76 leads to

s=Ilx+Ly+1.:z (5.78)

This scalar product shows that the coordinate s is measured along the straight
line. It also follows that for a given time ¢ = ¢,, the amplitude of the volu-
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metric strain is constant if s = constant. This is the equation of a plane (Eq.
5.78) normal to the direction of propagation.
The corresponding amplitudes of the displacements equal

u, = I,Ap €xp ["ci’(—l,,x Ly — l,z):l (5.792)
P

v, = I,Ap exp ["z‘"_(—l,,x Ly — l,z):| (5.79b)
P

w, = I,Ap eXp "ci’(—l,,x — Ly — I,z):| (5.79¢)
F 4

Equation 5.65 is satisfied, as is verified by substituting Eq. 5.76 and making use
of Eq. 5.77. 1t follows from Eq. 5.79 that 4 is the amplitude of a wave whose
displacement vector coincides with the direction of propagation. This represents
the definition of the dilatational or P-wave, The subscript p has been introduced
to denote the corresponding displacements in Eq. 5.79. Summarizing, the particle
motion of a P-wave with an amplitude A4, takes place along the direction of
propagation (determined by the direction cosines /,, /,, I,) and is constant over
a plane perpendicular to it. The velocity of propagation ¢, is constant and
depends on material properties only.

5.2.3 S-Wave

Turning to the other wave equations (Eq. 5.75), a solution is analogously
given to Eq. 5.76 by

{Q} = ——%{C} exp %’(—mxx —myy — m,z)] (5.80)

with
m:+ m:+ mk=1 (5.81)
m.C,+mC,+ mC, =0 (5.82)

The direction of propagation is specified by the direction cosines m,, m,, and
m, (Fig. 5-11b). The velocity equals c,. Equation 5.82 follows from Eq. 5.67. As
the scalar product vanishes, the vector {C} and thus {Q} are perpendicular to the
direction of propagation.

The corresponding displacement amplitudes equal

u, = (m,C, — m,C,) exp l:i—c@(——mxx - my — m,z)] (5.83a)
v, = (m,C, — m,C,) exp |:ic£(—mxx —m,y — m,z)] (5.83b)
w, = (m,C, — m,C,) exp [icg(——m,x — myy — m,z):| (5.83¢c)

Equation 5.66 is satisfied. From Eq. 5.83 it follows that the displacements are
proportional to the components of the vector product of {C} and the direction of
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propagation. This means that the particle motion of this wave lies in a plane
perpendicular to the direction of propagation. This is the definition of the
distortional or S-wave. The subscript s denotes the corresponding displacements
in Eq. 5.83.

The trial functions selected for e and {Q} (Eqs. 5.76 and 5.80) do not repre-
sent the most general solution of the wave equations. They correspond to plane
waves.

In general, the displacement vector of the S-wave can be further decom-
posed into a horizontal component with an amplitude Agy and into a component
with an amplitude Agy lying in the plane which contains the global vertical
z-axis and the direction of propagation (Fig. 5-11b).

C

ASH = A/mz—_;—mi (5.843)
m,C, — m,C,
Asy = 7;‘;‘5—_{__’;-%’—‘ (5.84b)

Asy and Agy are the amplitudes of the SH- and SV-waves, respectively. The
displacements in terms of these amplitudes can be reformulated as

_ mxm,Asv - myASH ex [i&] B . _ ]
b T Mt me Pl (—mx —my —mz2) | (585)

_ mym,Agy + m,Asy [12 _ B B :I
v, = N exp C:( m.x —my — m,z) (5.85b)

W, = —./m? + m? Agsy exp l:lcg(—mxx —my — m,z)] (5.85¢)

These expressions are easily verified using simple geometric considerations.

For a vertically propagating S-wave (parallel to the z-axis, m, = m, = 0)
the definition of the SH- and SV-waves breaks down. Assuming quite arbitrarily
that the SV-wave exhibits a motion in the x-z plane leads to

u, = Agy exp (—‘cﬂ ) (5.862)
0, = Asu exp (—"{‘—’z> (5.86b)
w, =0 (5.86¢)

Summarizing, the particle motion of an S-wave occurs in a plane perpendi-
cular to the direction of propagation (determined by the direction cosines m,,
m,, and m,) and is constant over this plane. The horizontal component with an
amplitude Agy and the component with an amplitude Agy (lying in a plane deter-
mined by the z-axis and the direction of propagation) propagate with the con-
stant material-dependent velocity c,.

In an infinite medium, these inclined body waves occur. As the three
components /,, I, I, or m,, m,, m, are all equal to or less than 1, they can be
interpreted as the direction cosines of the direction of propagation of the P-wave
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or the S-wave, respectively. However, the formulation still remains valid for
values larger than 1 and for nonreal values as long as Eq. 5.77 or Eq. 5.81 is
satisfied. As will be discussed in depth later, this case corresponds to generalized
surface waves.

5.2.4 Material Damping

The effect of material damping, which can be different for P- and S-waves,
is examined next. Applying the correspondence principle (Section 2.4), material
damping is taken into account by introducing complex material properties in
Egs. 5.72 and 5.74.

A* 4+ 2G* = (A + 26)(1 + 2¢,0) (5.87a)

G* = G(1 + 2(0) (5.87b)

An asterisk always denotes a complex value. The ratios of the linear hysteretic
damping for P- and S-waves are denoted as {, and {,, respectively. For {, # {,,

Poisson’s ratio v will also be complex. This is deduced from Egs. 5.63 and 5.69.
Complex wave velocities result from Eqs. 5.72 and 5.74.

¥ =c,n/1+ 20,0 (5.88a)
ck=c 1+ 20 (5.88b)

If {, = {, is assumed, { is written without.a subscript.

5.2.5 Total Motion

It is often reasonable to assume that the directions of propagation of the
P- and S-waves lie in the same vertical plane (e.g., the x-z plane). Substituting
1, =m, = 0 in Egs. 5.79 and 5.85, adding the displacements caused by P- and
S-waves, and taking damping into consideration leads to

u = [ Apexp [iw(_lz_jf — lc’—iﬂ + m Agy exp [ico(——m’;x - m;z)i| (5.89a)

14 P c! cl
v = Agg €xp [ico(—”;’;x - ’;‘j)] (5.89b)
w = I, Ap exp l:ia)(——l"—f — l’—i):l — m,Agy eXp [iw(—m’;x — m;‘z)] (5.89¢)
Cp Cp Cy Cs

The in-plane displacements with the amplitudes # and w depend only on the P-
and SV-waves. The out-of-plane displacement with the amplitude » is caused by
the SH-wave and is thus independent of u and w. For this orientation of the
directions of propagation, Eqs. 5.77 and 5.81 result in

Pyp=1 (5.90)
m:+ mk=1 (5.91)
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To be able to analyze the layered half-space used as the model for the soil,
boundary conditions (at the surface) and continuity requirements between
adjacent layers and between the bottom layer and the half-space have to be
formulated. Excitations, either as prescribed motions or as specified external
loads, have to be processed. This can be achieved, as in conventional structural
analysis, by assembling the contributions of the individual structural elements
to form the total system. It is thus necessary to calculate the dynamic-stiffness
matrices and the consistent-load vectors of a layer and of a half-space, which
form the structural elements in this case. This is performed in the remainder of
this chapter.

5.3 DYNAMIC-STIFFNESS MATRIX FOR OUT-OF-PLANE MOTION
5.3.1 Types of Waves

The horizontal layer of constant material properties shown in Fig. 5-12
represents the basic element for analyzing a layered site. The half-space can, as
will be discussed, be regarded for certain derivations as the limiting case of a
layer with the depth approaching infinity. The origin of the local coordinate
system with the z-axis pointing downward is located at the top of the layer of
depth d. For SH-waves, the out-of-plane displacement with the amplitude »
is specified in Eq. 5.89b. The form of the equation compels the boundary condi-
tions at the top and bottom of the layer to vary also as exp [—iwm, x/c¥]. As
a total of two boundary conditions has to be satisfied [displacement v(z, x)
and/or stress 7,,(z, x)], a second wave with the same variation in x is introduced.
For a given value of m, (which can specify the angle of incidence), m, can be
selected as F./1 — m? (Eq. 5.91). Equation 5.89b is then reformulated as

Q,
I
W,V G
y
o =
2 he
/’\f q2
- 'T;zz
Q.

Figure 5-12 Nomenclature of layer for out-of-plane motion.
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T — m?
’U(Z, x) == [ASH exp (iw%z)
T—m2 )

+ Bgy exp (—iwil—c*ﬂz):l exp (——zw%x) (5.92)
where Agy and Bgy are the amplitudes of the waves traveling in the negative and
positive z-directions, respectively (Fig. 5-12). In determining the direction of
propagation it should be remembered that the harmonic motion is represented
as exp (+iwt). The value m, equals cos ygy, whereby yy is the angle of incidence
measured from the horizontal. This interpretation of m, holds only for a real
value that is smaller than or equal to 1. Introducing the notation

¢ = % (5.93)

k= % (5.94)
i

t = J —7—1 (5.952)

in Eq. 5.92 leads to
v(z, x) = [Asn exp (iktz) + Bsy exp (—iktz)]} exp (—ikx) (5.96)

The values ¢ and k are the phase velocity and the wave number, respectively. It
follows from Eq. 5.93 that for a layer without material damping, c is equal to
the apparent velocity c, discussed briefly in Section 4.2.1 (Eq. 4.1a and Fig. 4-2).
For vertically incident waves (ysg = 90°), ¢ = oo. The scalar ¢ equals tan ygy.
For a value of m, < 1, t is a real positive value. The same also follows if ¢ is
defined slightly differently as

. T
‘= —;Jl -5 (5.95b)

x

As will be shown later, when surface waves are examined (Section 6.4), this
definition also results in the correct sign, when m, > 1. In all algebraic trans-
formations, ,/—1 = i can be used. Admittedly, at this stage of the derivation,
Eq. 5.95b appears to be unnecessarily complicated.

5.3.2 Transfer- and Dynamic-Stiffness Matrices of Layer
and of Half-Space

For the sake of conciseness, the term describing the variation with z in

Eq. 5.96 is denoted as » or v(z). Equation 5.96 can thus be rewritten as
v(z, x) = v(z) exp (—ikx) (5.97)
»(z) can be interpreted as the amplitude of the wave traveling in the x-direction:
v(z) = Asu exp (iktz) + Bgy exp (—iktz) (5.98)
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The amplitude of the shear stress 7,,(z) calculated from Egs. 5.62f and 5.61f
with w = 0 using Eq. 5.87b as

7,/(2) = G*v,, (5.99)
equals
T,.(2) = iktG*[Agu exp (iktz) — Bsy exp (—iktz)] (5.100)

The other shear stress with amplitude z,, is not needed to calculate the stiffness
matrix, as this stress does not act on the interface z = constant. The displace-
ment and stress amplitudes at the top of the layer (subscript 1) follow from
Eqgs. 5.98 and 5.100 as

Yol ol ow
Tyt iktG* —iktG*_| | Bsy '

Expressing the corresponding values v, and 7,,, at the bottom of the layer
(subscript 2) as a function of Ag; and Bsy and then eliminating Agy and Bgy
using Eq. 5.101 results in the transfer matrix relating the state vector at the top
of the layer to that at the bottom.

{ v, } _ I: cos ktd (ktG*)~!sin ktd}{ v, } (5.102)

Tyr2 —ktG* sin ktd cos ktd Ty

The vector composed of v and t,, describes the state. The transfer matrix is
not symmetric. It must be realized that when assembling the stiffness matrix,
the applied loads are defined in the global-coordinate system. The local system
used to define the stresses is opposite to it on the negative face of an element.
Introducing the external load amplitudes Q, = —1,,, and Q, = 1,,, in Eq.
5.102 and performing a partial inversion (pivoting on the second element of the
first row) leads to the (symmetric) dynamic-stiffness matrix of the layer [S&l.

Q] _ ket [cosktd —1 ] "’1} (5.103)
0, sin ktd| 1 cos ktd | |v,

The superscript L stands for the (soil) layer. In the dynamic-stiffness matrix,
the out-of-plane motion is denoted by the subscript SH.

Applying a load at the free surface of a half-space, only an outgoing wave
with amplitude By is developed. The radiation condition, stating that no energy
can propagate from infinity toward the free surface, excludes the incoming
(incident) wave with the amplitude Agy. The subscript o is used to denote the
free surface of the half-space. Setting 4sz = 0 in Eq. 5.101, eliminating Bgy and
with Qo = —Tyz1»

Q, = iktG*v, (5.104)

results. For an undamped system, the dynamic-stiffness coefficient of a half-
space S§u is imaginary in contrast to the real [S%,] (for a real value of ¢). As the
half-space is mostly used to represent the (bed)rock, a superscript R is intro-
duced. The matrix [S%] can be interpreted as a system of springs with fre-
quency-dependent coefficients, for which the applied load is in phase with the
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displacement. In contrast, S§& represents a damper with a coefficient ¢G/c,
indicating that for the half-space, energy is radiated toward infinity. This is
verified substituting Eq. 5.94 and with 9, = iwv,.

For a damped system, the dynamic-stiffness coefficient S&; (Eq. 5.104) also
follows from the first element of [S%;] (Eq. 5.103) for the limiting case d — co.
This can be shown as follows: As discussed in connection with Eq. 5.95, ¢ is a
real positive value. Expanding ¢} (Eq. 5.88b) into a Taylor series, it is verified
that the imaginary term of ¢ (Eq. 5.93) is positive and that of k (Eq. 5.94) nega-
tive. In the complex value of k¢ = Re (kt) + i Im (kt), Im (kt) is thus negative.
The factor appearing in the first element of [S§y] is expanded using straight-
forward algebra as

cos [(Re (kt) + i Im (k1))d]
sin [(Re (kt) + i Im (k1))d]
__sin [Re (k£)d] cos [Re (k1)d](1 — tanh? [Im (k#)d])
" sin? [Re (kt)d] + cos? [Re (kt)d] tanh? [Im (kt)d]
i tanh [Im (kt)d]
sin? [Re (kt)d] + cos? [Re (kt)d] tanh? [Im (k#)d]
As the tanh [Im (kt)d] (with a negative argument) converges for d — oo to the
value —1, the real and imaginary parts converge to 0 and i, respectively. The
first element of [S&;) thus converges to ik#G*, which is equal to S&;. It is worth
mentioning that the off-diagonal term of [S§;] converges to zero.

It should be stressed that the amplitudes of the displacements v and of the
loads Q (or stresses 1,,) vary as exp (—i#kx) in the horizontal direction. An
expansion in the wave-number domain is thus performed, which is actually a
Fourier transform. For a given w, the stiffness matrix is a function of the phase
velocity ¢ (or of the wave number k), of the material properties (G, p, {,), and
of the depth d of the layer.

(5.105)

5.3.3 Special Cases

The following special cases are of interest, in which indefinite expressions
arise in Egs. 5.103 and 5.104. They occur in the applications in Chapters 6 and 7.

l.w>0,k=0
This corresponds to vertically incident waves (¢ = oo). The value kt
converges to w/ck.

G* ® cos c:_;i —1
L _ w s
[Ssul = o9y (@dlc¥) cF od (5.106a)
—1 cos —
c.'
R, = iG*:’—* (5.106b)

Equation 5.106a corresponds to Eq. 5.57.
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2. w=0,k#0

* [cosh kd —1
[S§u]l = Suﬁ‘%(g[ 1 cosh kd} (5.107a)
S& — kG* (5.107b)
3. w=0,k=0
[S&] = 67* [_i B ﬂ (5.108a)
S& =0 (5.108b)

4, o #0,k— +oo
The value k¢t converges to —ik, as in case 2, resulting in the same result
as in the static case (Eq. 5.107). For the layer, the solution tends to that of
the half-space.

5. w— o0, k#0
The value kt converges to w/c¥, as in case 1. For high-frequency excitation,
the system behaves the same as for vertically incident waves (Eq. 5.106).

5.3.4 Loaded Layer

Distributed loads acting across the thickness of the layer are calculated as
follows: The layer on which the distributed load acts is fixed at the two inter-
faces. The corresponding reaction forces (external loads) are calculated to
achieve this condition, whereby the analysis can be restricted to the loaded layer.
They are then applied with the opposite sign to the total system. To this global
response, that of the fixed layer has to be added to calculate the total one. The
analysis of the fixed layer can be performed as described below.

With the same variation with x [= exp (—ikx)] as for the displacement v,
the amplitude g(z) for a linear variation with z equals (Fig. 5-12)

9 = q: + (@ — 4) > (5.109)

The dynamic-equilibrium equation (Eq. 5.60b) for the out-of-plane motion with
a distributed load equals

Tyx, x + Tyz,z = —PCOZU —dq (5110)

The out-of-plane motion with the amplitude »(z, x) (Eq. 5.97) leads to shear
stresses with amplitudes 7,,(z, x) (which have already been addressed, Eq. 5.99)
and with amplitudes z,,(z, x), which are equal to (Egs. 5.61d and 5.62d)

7,2z, x) = G*,,(z, x) (5.111)
Substituting Eq. 5.97 in Eq. 5.111 results in
7,0z, x) = —ikG*v(z) exp (—ikx) (5.112a)

or
1,(2) = —ikG*v (5.112b)
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Substituting Egs. 5.1122 and 5.99 in Eq. 5.110 and differentiating and intro-
ducing Eq. 5.109 leads to

—k*G*v + G*v,,, = — pw*v — <1 -z

Do —Fa G113
By inspection, a particular solution equals
1 z
vP(z) = MI}II — (g, — qZ)FJ (5.114a)
or
—1 z
vi(2) = m——zt{ql —(q: — Qz)j:l (5.114b)

The superscript p denotes the particular solution. At the top and bottom of
the layer (at the interfaces), the corresponding displacement amplitudes are

v = k;‘G‘ilt ; (5.115a)
V8 = et (5.115b)
Substituting Eq. 5.114b in Egs. 5.99 and 5.112b leads to
() =L (5.1162)
() =+ 41 — @ — )7 | (5.116b)
The amplitudes of the external loads (reactions) at the top (@7 = —1%.,) and
bottom of the layer (Q4 = 1%,) follow as
—q, +
0 = Ii;tquz (5.117a)
=41 (5.117b)

To fix the two interfaces, the homogeneous solution (superscript #) correspond-
ing to the negative values of v7 and v (Eq. 5.115) has to be superimposed on the
particular one. The external loads (reactions) Q% and Q} follow from Eq. 5.103

using [S&] with v} = —v? and v4 = —wvj. The total external loads @, and Q,
to be applied to the total system are equal to
0, =0/ — o} (5.118a)
Q,=—0f — 0} (5.118b)

To determine the local response, the homogeneous solution described by Eq. 5.98
(corresponding to v% and ¢%) has to be added to that of the particular one
(Eq. 5.114). For the sake of conciseness, the equations, whose derivation is
straightforward, are not specified explicitly. The case of a linearly distributed
load acting on a line inclined with respect to the horizontal is discussed in
Section 7.5.4.
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5.3.5 Rate of Energy Transmission

Finally, the rate of horizontal energy transmission N for a layer at x = 0
is calculated. The 7,,(z) does work with v(z) on such a vertical plane. The rate
of energy transmission N through x == 0 is defined as the product of the real
parts of the force 7, ,(z) dz exp (iwt)and of the velocity #(z) exp (iwt), integrated
over the depth d of the layer and averaged over a period 27/w

N=-2 fo ’ f OM Re [7,.(2) exp (iwf)] Re [(z) exp ()] dt dz  (5.119)
Recalling that the displacement equals the product of the displacement amplitude
(Eq. 5.97) and exp (iwt), it follows that

2(2) = iwv(z) (5.120)

The two factors appearing in Eq. 5.119 equal
Re [7,,(2) exp (iwr)] = Re[7,,(2)] cos wt — Im [1,,(2)] sin wt (5.121a)
Re [4(z) exp (iwt)] = Re [#(2)] cos wt — Im [#(z)] sin w? (5.121b)

Substituting Eq. 5.121 in Eq. 5.119 and averaging over one period 2x/w results
in

N = =4 [ ReG) Re () + Im (5(2) Im (z, (N dz (5.122)

The integrand of this equation can be interpreted as the scalar product of the two
vectors 9(z) and 1,,(2).

Substituting the definitions of ¢(z) given in Eq. 5.120 and of 7,,(z) specified
in Eq. 5.112b, in Eq. 5.122 leads to

N = %Re (kG*) f ) |9(2)|? dz (5.123)

5.4 DYNAMIC-STIFFNESS MATRIX FOR IN-PLANE MOTION

5.4.1 Types of Waves

The nomenclature for the in-plane motion of the layer of constant material
properties is shown in Fig. 5-13. The origin of the local coordinate system with
the z-axis pointing downward is located at the top of the layer of depth d. For
P- and SV-waves, the in-plane motion with amplitudes # and w are specified in
Eqs. 5.89a and 5.89c. The form of these equations compels the boundary condi-
tions at the top and bottom of the layer to vary as exp[—iwl,x/c¥] and as
exp [—iwm,x/c}¥]. To achieve the same variation with x, which allows the
analysis to be in effect, concentrated on the variation with z,

L _ m, (5.124)

kT %
ey o}
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has to be enforced. As a total of four boundary conditions has to be satisfied
(displacements with amplitudes » and w, stresses with amplitudes o, and 7,,),
a second P- and SV-wave with the same variation in x is introduced in Egs.
5.89a and 5.89c. For a given value of /., /, can be selected as F./1 — IZ (Eq.
5.90). The value /, equals cos yp, whereby w; is the angle of incidence of the
P-wave measured from the horizontal. This interpretation of /, holds only for
a real value which is smaller than or equal to 1. The top sign before the radical
corresponds to a wave (with the amplitude 4;) traveling in the negative z-direc-
tion, as the harmonic motion is represented as exp (+iwt). The bottom sign
corresponds to a wave (with the amplitude Bp) propagating in the positive z-
direction. Analogously, m, can be chosen as F./1 — m? with m, = cos sy,
whereby wey is the angle of incidence of the SV-wave. The amplitudes Asy and
By are associated with the SV-waves propagating in the negative and positive
z-directions, respectively. This procedure is analogous to the derivation of Eq.
5.92 for the SH-waves. Equations 5.89a and 5.89c are then reformulated as

u(z, x) = l,,[Ap exp (tco’V P — L z> + B: exp( —Nlc:l’%zﬂ

F4 P

X exp (~zw—x) ST [ASV exp (mw/ 1 — "z) (5.1252)

— Bgy exp (—zw“/l = ):l exp (——iw’ci:;x)

w(z,x) = —./1 — 12[,41, exp (zw“—/c—pﬁ ) Bs exp (~,wA/l — )]

P

X exp (—iw;l%x) —m,| Asy exp (iwllc:—’"*z) (5.125b)

P s

+ Bgy exp (—ta)“/l o )] exp (—iw%x)

It is convenient to introduce the following notation:

-
c=% - (5.126)
k = % (5.127)
s — —i\/1 -1 (5.1283)
. T
‘= —le -5 (5.128b)

where ¢ and k are the phase velocity and the wave number, respectively. It fol-
lows from Eq. 5.126 that the phase velocity ¢ (and the wave number) are the
same for the P- and SV-waves. For a layer without material damping, ¢ is equal
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to the apparent velocity ¢, (Eq. 4.1). This relationship is illustrated in Fig. 4-2.
The values s and ¢ are equal to tan y; and tan gy, respectively. This somewhat
strange definition of s and ¢ is discussed in connection with Eq. 5.95b.

For the sake of conciseness, the terms describing the variation with z in
Eq. 5.125 are denoted as u or u(z) and w or w(z), respectively. This equation can
thus be rewritten as

u(z, x) = u(z) exp (—ikx) (5.129a)
w(z, x) = w(z) exp (—ikx) (5.129b)
where
u(z) = L [A4p exp (iksz? + By exp (—iksz)] — m,t[Asy exp (iktz) (5.1302)
— Bgy exp (—iktz)]
w(z) = —1 s[Ap exp (iksz) — By exp (—iksz)] — m [Agy exp (iktz) (5.130b)

+ Bgy exp (—iktz)]

Here u(z) and w(z) can be interpreted as the amplitudes of the wave traveling in
the x-direction.

5.4.2 Transfer- and Dynamic-Stiffness Matrices
of Layer and of Half-Space

Using Egs. 5.61a, 5.61c, 5.62a, 5.62c, 5.61e, and 5.62e, the amplitudes of
the normal stress o,(z) and the shear stress 7,,(z) are expressed as

o,(2) = A*u,, + w,,) + 2G*w,, (5.131a)
T.(2) = G*(u,, + w,,) (5.131b)

Substituting Egs. 5.129 and 5.130 in Eq. 5.131 and performing the differentia-
tions with respect to x and z leads to

0,(2) = +ikl (1 — t*)G*[Ap exp (iksz) + Bp exp (—iksz)]
—i2km tG*[Agy exp (iktz) — Bsy exp (—iktz)]
T,.,(2) = i2kl sG*[Ap exp (iksz) — By exp (—iksz)]
+ikm, (1 — t*)G*[Asy exp (iktz) + Bsy exp (—iktz)]

The other normal stress with the amplitude &, is not needed to calculate the
stiffness matrix, as this stress does not act on the interface plane z = constant.

The displacement and stress amplitudes at the top u,, w,, ,.,,0,:, and at
the bottom of the layer u,, w,, 7,,,, 0,, follow from Eqs. 5.130 and 5.132 by
introducing z = 0 and = d, respectively, as a function of the amplitudes Ay, Asy
of the incident waves and Bs, Bsy of the reflected waves. Eliminating these
amplitudes results in the transfer matrix shown as Eq. 5.133 in Table 5-2. The
state vector is composed of u, w, 7,,, and o,. Introducing the external load
amplitudes P, = —1,,,, R, = —0,,, P, = 1,,,, and R, = 0,, defined in the
global-coordinate system in Eq. 5.133 of Table 5-2 and performing a partial
inversion leads to the dynamic-stiffness matrix of a layer [Sfgv], shown as Eq.
5.134 in Table 5-3. To achieve symmetry, R;, R,, w,, and w, are multiplied by i.

(5.132a)

(5.132b)
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As discussed for the out-of-plane motion in Section 5.3, the dynamic-
stiffness matrix of the half-space [S®sy] is derived by suppressing the incoming
(incident) waves. Equations 5.130 and 5.132 are formulated for z = 0. The
condition 4 = A5y = 0is then introduced and finally B, and Bgy are eliminated.

This leads to (with P, = —1,,;, R, = —0,;)
is(1+1) 15 141
P 1+ st ! 1 , :
{. "}:kG* T T U } (5.135)
iR, 5 1420 it(1 + %) | liw,
14 st 1+ st

The subscript o is used to denote the free surface of the half-space, which is
denoted with a superscript R (for bedrock).

Again, for a medium without material damping, [S§y] is imaginary (for
real values of s and ¢), which corresponds to a damper, in contrast to [Sfsy],
which is real and can be interpreted as a spring. For the half-space, energy is
radiated toward infinity.

For a damped system, the submatrix of order 2 X 2 on the diagonal of
the dynamic-stiffness matrix of the layer converges to that of the half-space for
the limiting case d — oo. The off-diagonal submatrix of [S.sv] converges to
zero. This is demonstrated analogously as for the case of out-of-plane motion
(see Eq. 5.105). In a damped layer, the imaginary parts of ks and of k¢ are both
negative. The derivation is not presented in detail.

For a given w, the stiffness matrix is a function of the phase velocity ¢ (or
of the wave number k), of the material properties (4, G, p, {,,{,) and of the
depth d of the layer.

5.4.3 Special Cases

Indefinite expressions arise in Eqs. 5.134 and 5.135 in special cases. The
following equations then apply; the amplitudes of the displacement and of the
external load in the vertical direction are still multiplied by i.

l.Lw>0,k=0
This corresponds to vertically incident waves (¢ = oo). The values ks and
kt converge to @/c¥ and w/c¥, respectively.

[Sksv] -
cot(f? 0 _m 0
*
_¢® 0 ooy 0 ~& @D
v ‘sin‘(alad‘/cr) 0 cot G 0
0 dmem 0 Feoly |

(5.136a)



d

5

P 4s0d py quIs A

e

)

s
%2

+

Q}
PY <yuIs AHU +1)
pr(£ - 1)-
P Us0d py yurs ANW +1)
a
Py quis ANMU Yo —
e
Py yuss (2 H +1)-
Py usoo py (£ m ~1)

R
NM + Ql
d

P 4soo py ANMu 1)-

P qus A

Q

N*

N*u

BEIs DA O+ ¥ ‘0 =

P zquIs A ﬁvl

N*u

{5 = D)epox — py oqus (£

~N
-
<
g
w
N

o
e
=
=
@
g
h*'\
+
—
~—
f

Py ﬁSEA Mu ﬁv

® 10} HAY] JO XLNB SSAUgnS-dlumeui(q t-§ A1AV.L

d

£

a
+T

+1)=a

a1aym

= [*%4s]

162



Sec. 5.4 Dynamic-Stiffness Matrix for in-Plane Motion 163

1 0
[SE.ov] = iG*%{ 0 C;:J (5.136b)
! cF
The horizontal and vertical directions are uncoupled.
2. w=0,k+#0
[SLsv] is specified as Eq. 5.137a in Table 5-4.
1 1
1+ c*%c*? 1 + c*%[c*
[S8.5u] — 24G* fez i (5.137b)
T+ c*c* 1+ c¥c}?
3.w=0,k=0
T 1 0 —1 N
*2 c*Z
G* 0 &= 0 -k
Sksv] = * * 5.138
[SEsv] d| _1 0 1 0 ( a)
c*2 c*z
R - o
00
[SE-sv] = [0 o} (5.138b)

4 w#0,k— +oo
As in the case of the SH-wave, the system acts statically.

5. w— o0, k#0
Once again, for this high-frequency excitation, the system behaves as for
vertically incident waves.

5.4.4 Loaded Layer

Distributed loads acting across the thickness of the layer are calculated
analogously as for the out-of-plane motion. For a linear variation with z, the
amplitudes p(z) and r(z) in the x- and z-directions (Fig. 5-13) equal

p(2) =py + (P2 — Pl)—;— (5.139a)

H2)=ry + (= ) (5.139b)

The variation in the x-direction is the same as for the other variables
[exp (—ikx)]. The dynamic-equilibrium equations (Egs. 5.60a and 5.60c) for
the in-plane motion with a distributed load equal
ax,x + sz.z - _pmzu — P (5.140a)
Tonox + Oz 0= —pw*w —r (5.140b)
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Figure 5-13 Nomenclature of layer for in-plane motion.
Using Egs. 5.61a, 5.61c, 5.62a, and 5.62¢, the amplitude of the (other) normal
stress follows.
0.(2) = AMu,, + w,,) + 2G*u,, (5.141)

Substituting the stress-displacement relations (Egs. 5.131 and 5.141), introducing
Eq. 5.139 and performing the differentiations with respect to x leads to

—(A* 4+ 2G*k*u + G*u,,, — ik(A* + G*)w,,

5.142a
= —po’u — (1 — %)pi — %Pz ( )
—ik(A* + G*u,, — k*G*w + (A* + 2G*)w,,,

z z (5.142b)

= —-—pwzw - (l - 7)"1 - 7"2

A linear variation with z represents a particular solution (superscript p)

u(z) = a; + az-;. (5.143a)
wi(z) = ¢1 + ey (5.143b)

Substituting Eq. 5.143 in Eq. 5.142 and identifying the constant and linear terms
leads to

1 ¥ i c*?
@ = —pgr g + pgrga(l — @) - (14
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l %*2
a, = m'&?([’l — P2) (5.144b)
i c*? 1
e = pgagr (L~ )0 — 2D — g (5.144c)

€y = P'Gl—*ti(r‘ —r) (5.144d)
The corresponding displacements at the top and bottom of the layer follow from
Eq. 5.143, setting z = 0 and = d, respectively. For the sake of consistency, the
amplitudes of the loads and of the displacements in the z-direction are multiplied

by i.

uf
wfl 1
w |~ G
iwg
— _l‘L:‘z -—1__(1 . 9’:_2) 0 . 1 (l . c’:‘z)—
5% c¥? kds’t c¥ kds*? c*?
1 c¥? 1 1 ¥
) — gl — Zv) -7 rar! c;!‘z) 0
0 _1_(1 — gj) __l_gr_z __1 (1 — c::z)
kds*t c¥z s c¥? kds*t c¥:
el B 0 eboP b
| kds*t* ¥ kds?t? ck? e _
Py
x " (5.145)
P2
ir,

Substituting Eq. 5.143 in the stress-displacement relations (Egs. 5.131 and
5.141), 12,(2), 62(z), and gZ(z) follow. The amplitudes of the external loads

(reactions) at the top (P? = —12,,, R? = —o?%;) and bottom of the layer (P =
72,2, R§ = 0?%,) are equal to
(P?) B 1 kd -1 0 [fup)
. c*? c*? c*? | 1.
g _kd(E'*?“z) g 0 —ox || s 146
= — 4 3
pg[~d —1 0 i Cka || G149
. %2 *2 *2 .

Substituting Eq. 5.145 in this equation, the external reactions are expressed as a
function of the applied loads. From here on, the procedure is analogous to that
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described for the out-of-plane motion and will not be repeated. The case of a
linearly distributed load acting on a line inclined with respect to the horizontal
is sketched in Section 7.5.4.

5.4.5 Rate of Energy Transmission

The rate of horizontal transmission N for a layer at x == 0 is calculated
next. On such a vertical plane, g,(z)and 7,,(z) do work with « and w, respectively.
The contribution of the normal stress to N is equal to the product of the real
parts of the force 0,(z) dz exp(iwt) and of the velocity u(z) exp(iwt), integrated
over the depth d of the layer and averaged over a period 2z/w.

d 2n/w
N = _fc% J; J; (Re [6.(2) exp (iwt)] Re [u(z) exp (iw?)]

+Re [7,,(2) exp ({wr)] Re [W(2) exp (icwr))) dt dz

As the displacement is equal to the amplitude times exp (icwt), the velocity
amplitudes are equal to

(5.147)

u(z) = iowu(z) (5.148a)
w(z) = iow(z) (5.148b)

As an example for determining the factors in Eq. 5.147,
Re [u(z) exp (iwt)] = Re [u(2)] cos wt — Im [4(2)] sin ot (5.149)

follows. Substituting this type of expression in Eq. 5.147 and averaging over
one period 27/w results in

N = —4 [] (Re [0.(2] Re ()] + Im [o,(2)] Im [u(2)]
+Re [£..2)] Re [(#(2)] + I [£,.(2)] Im ()] dz

The integrand of this equation can be interpreted as the sum of the scalar prod-
ucts of the vectors o,(z) and u(z) and of the vectors 7,,(z) and w(z).

(5.150)

5.5 THREE-DIMENSIONAL WAVE EQUATION
IN CYLINDRICAL COORDINATES

For the calculation of the dynamic-stifiness matrix of a three-dimensional
foundation, cylindrical coordinates are introduced (Section 7.2.3). To be able
to demonstrate that the same dynamic-stifiness matrices arise in cylindrical
coordinates as for plane waves in Cartesian coordinates, the derivation of the
wave equation in cylindrical coordinates is summarized in the following. As in
Section 5.2, the main objective is to define the nomenclature used in these
well-known relations.
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5.5.1 Equation of Motion in Volumetric Strain
and in Rotation Strains

In the cylindrical coordinate system r, 8, z shown in Fig. 5-14, the dynamic-
equilibrium equations for harmonic excitation are formulated as

g,.., + %Tra,ﬂ + 1rz,z + 0_'_,7—0'0 = —pa)zu (5.1513)
1 2 \

Tor,r + — To.0 Tt Tor, s T Tor = — PO (5.151b)

TZr.r + _1""110,6 + azz,z + T_;,- = —PCOZW (5.1510)

The amplitudes of the displacements u, v, and w are defined in the radial, circum-
ferential, and vertical directions and the stress amplitudes illustrated in Fig.
5-14 are functions of r, 8, and z. These arguments are omitted from the equations
for the sake of conciseness.

The strain-displacement equations are equal to

€, =, (5.152a)

&="2 —lr—v,, (5.152b)

©

Figure 5-14 Cylindrical coordinate system with displacements and stresses.
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€, = Wy, (5.1520)
Vo = %u,a +o, — = (5.152d)
Vee = U, + W, (5.1526)
Yo: = Uy, + %wsﬂ (5.152f)

Hooke’s law specified in Eq. 5.62 still applies, changing x and y to r and 6.

As for Cartesian coordinates, the volumetric strain with amplitude e and
the rotation-strain vector with the amplitude components Q,, Q,, and Q, are
introduced. In cylindrical coordinates, they are defined as

e = u’r + % + %’Uw + wsz (5.153)
Qr = %(-vu + %Wyo) (5.1543)
Q = (u,; — w,,) (5.154b)
Q, = %(—%uw + v, + ”7) (5.154¢)

The components of the rotation-strain vector satisfy the following condition:
Q,,+ 97 + %Q,,,, +Q,.,=0 (5.155)
The three equations of motion (Eq. 5.151) are expressed in the new variables as
(A* + 2G*e,, + 20*(9,,, — %Q,,,) — —potu  (5.1563)

B 2GY 26H—0,, + Q)= —po  (5.156b)

(A* + 2G%)e,, + 2G* (%Q,,, —Q,, — %) = —pw*w  (5.156¢)
To uncouple these equations of motion, the three potentials with amplitudes g,
¥, and y are introduced. The components of the displacements are expressed in
terms of the derivatives of these potentials as

U=g9, + Vors + —1‘1,0 (5.1578)
v = %¢’0 =+ %'[”01 — Xor (5.157b)
1 1

W= ¢’l — Wy — T'I/,, - ';i‘v/,oo (5.1570)
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Substituting Eq. 5.157 in Eqgs. 5.153 and 5.154 results in

e=Vwyp (5.158)
Q’ = %(—%Vzw’o + X!rz> (5.1593)
Qp = %(Vzwn + %x,a,) (5.159b)
Q, = $(=V2)( + Xo:) (5.159¢)

whereby the Laplace operator of any scalar a is defined as
Via = a,, + 2a, + a0+ b (5.160)

Substituting Eqs. 5.158 and 5.159 in Eq. 5.156 leads to the three equations of
motion expressed in the potentials. They are satisfied if the following three
equations apply:

Vg — —c%zzq; ‘ (5.1612)
P

Viy = —E—‘iizw (5.161b)

Viy = —C‘f’_;x (5.161¢)

The dilatational wave velocity c¥ and the shear-wave velocity ¢¥ are defined in
Eqs. 5.88a and 5.72 and 5.88b and 5.74, respectively. Equations 5.161 represent
the uncoupled wave equations.

All amplitudes introduced up to now are a function of the three coordinates
[e.g., u(r, 8, 2)]. In the following, a bar is used for conciseness to denote an
amplitude which is a function of r and z [ = u(r, z)). An amplitude that depends
on one variable only, mostly on z, is referenced without indicating the argument

[u = u(2)].

§.5.2 Solution Using Fourier Series Circumferentially
and Bessel Function Radially

It is convenient to express the variation of the amplitudes in the circum-
ferential direction @ in terms of a Fourier series. For the displacements, this
leads to

u(r, 0, 2) = Y cos n + 3 2 sin nf (5.162a)
o(r, 8, 2) = — 3 55 sin nf + Y 52 cos nf (5.162b)
w(r, 0, z) = X W cos nf + 3 we sin nf (5.162¢)

The summation is performed over the integer n (n = 0, 1, 2, .. .). The super-
scripts s and a denote the symmetric and antimetric terms, respectively. For
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simplicity, only the symmetric terms are kept. This allows the superscript s to
be dropped. The derived equations hold also for the antimetric case without
any modifications. In addition, the subscript » is omitted. It should be remem-
bered that all amplitudes with a bar depend on the Fourier term investigated.
Analogous series are formulated for all other amplitudes. Differentiations
with respect to 6 are performed. For example, substituting Eq. 5.162 in Eq.
5.153, it follows that
e= > écosnf (5.163a)

where
- - u n - -
e=uda, + —— 0 + w,, (5.163b)

All equations specified in this section can also be written using the amplitudes
denoted with a bar. For instance, Eq. 5.156a is formulated as

(A* + 2G%)6,, + 2G*(s‘2,,,, 4 %:’i) = — potil (5.164)
In particular, the potentials are expressed as
o(r,0,z) =Y @ cosnf (5.165a)
w(r,0,z) =3, W cosnf (5.165b)
x(r,0,2) = =3 7 sin nf (5.165¢)
The uncoupled wave equations (Eqs. 5.161) are equal to
2
Vi = —%;5 (5.166a)
14
) 2
Vg = ~c%y7 (5.166b)
2
Vg = —%22 (5.166¢)
where (Eq. 5.160)
Vi =a,, +-La, — Tata,, (5.167)
r r

The wave equations are solved by assuming a product for the function, which
separates the variables r and z. Substituting

o(r, 2) = p.(Np2) (5.168)
in Eq. 5.166a results in

1 n? w?
Prorr®s + S Pr 0 — 0P T OPre: = — 0P (5.1692)
14
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which, after rearranging, is equal to
wrrr l(prr__l_'l_z____¢z,zz_a)_2:__2
0, Tre TET T T of g (5.165b)
Since the variables appearing on the respective sides are independent of each

other, the common separation value, denoted as —k?, is constant. The right-
hand side of this equation,

@ _ 2)g, — 0 1
Pz, 22 + Efi - Q.= (5. 70)

has as solution
@, = a; exp (l\/g%; —kzz) + b, exp (——i CC'OTZZ——kZz) (5.171)

The values a, and b, are the constants of 1ntegrat10n The left-hand side of
Eq. 5.169d is rewritten as

e, .+ re,, + k*r* —n*)p, =0 (5.172)

This variable-coefficient differential equation is the so-called Bessel equation
of order n with the parameter k. Its solution equals

@, = ciJ(kr) + d, Y, (kr) (5.173)

J(kr) and Y,(kr) denote the Bessel functions of order n of the first and second
kinds, respectively. As the latter is unbounded in the neighborhood of the origin
(kr = 0), the integration constant d, is set equal to zero. This applies for the
tasks solved in this text. (If problems were addressed which did not include the
origin, as in the case of a cavity, this condition would not be enforced.)

When solving Eq. 5.172, it is assumed that k? is a positive value. If the
case k2 < 0 is investigated, so-called modified Bessel functions of order # of the
first kind I (kr) and of the second kind K, (kr) arise. As I, and K, are unbounded
for kr — oo and for kr — 0, respectively, this solution can be disregarded in
the context examined in this text (see problem 7.15).

Substituting Egs. 5.173 and 5.171 in Eq. 5.168 leads to

- ,,(kr)[A1 exp (7 J— — k2z) + By exp (— J— — k2 )] (5.1742)

Analogously, the solutions of the other two wave equations (Eqs 5.166b and

5.166¢) are as follows:
—
V= ,,(kr)l:Az exp (i z‘iz 2 ) + B, exp ( \/_ — k? )] (5.174b)

¥ = J(kr)[A3 exp ( \/_‘ — k2z > + By exp ( «/-—— — k? )J (5.174¢)

The resulting integration constants are denoted as 4, By, ..., B;.
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Formulating Eq. 5.157 for the amplitudes denoted with a bar, and sub-
stituting Eq. 5.174, the displacement amplitudes #, 7, and w are expressed as a
function of r and z as follows:

i = J,(kr),,[A1 exp (1«/9*2 — k2z> + B, exp (—i«/cﬂ,,f2 — kzz)}
+ JukP)in] S5 — kZ’:A exp ( ~/ ) B, exp( 14/-(—%2 — kzz)]
s (B 1 mon (/B )]

v = %J(k’)[Al exp(«/— — k? ) + B, eXp( J— — k2 )}
L ,.(kr)t,/ i kZI:Az exp( «/::Tzz —_ kzz> — B, exp(—g/gzz — kzz)]

A‘

— J(kr),,l:A3 exp (\/_ — k2 ) + B exp (——i«/f_oTz2 — k’-z)]
(5.175b)

F=J ,(kr),¢_—k[Alexp(J——k2)—Blexp( \/—‘kz ﬂ
T Gery] Ay ex (1] B — k2) + By exp(—iy/ B — k22) |

(5.175¢)

The following nomenclature is introduced, which is defined for the case of the
plane waves in Sections 5.3 and 5.4.

(5.175a)

=2 (5.176)
I = Eca"i — “_’ﬁwi‘ (5.1772)
m, — % - %‘ (5.177b)
s = ~i«/1 —l—lfz—i\/l _c,,*wT;cz (5.1782)
= —i«/l _an:= _q/l—c‘f’TZz (5.178b)

In addition, the integration constants are expressed as functions of other values
which can, as will be shown later, be identified as the amplitudes of the P-, SV-,
and SH-waves.
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Al = 7141)
B, = LB,
Az = ik—zx'ASV

>
I
1
|

'

2

4, = ——=Bsn
Using Eqgs. 5.177, 5.178, and 5.179, Eq. 5.175 is reformulated as
-1 n
i = Tk, (@) + I kr2)

7 = LI (eryu(z) + -1 o(2)

w = —J,(kn)liw(2)]
with
u(z) = 1 [Ap exp (iksz) + By exp (—iksz)]

— m_t[Asy exp (iktz) — Bgsy exp (—iktz)]
v(z) = Agy exp (iktz) + Bsu exp (—iktz)
w(z) = —I.s[Ap exp (iksz) — By exp (—iksz)]
— m,[Agy exp (iktz) + Bsy exp (—iktz))
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(5.1792)
(5.179b)
(5.179)
(5.179d)
(5.179)

(5.179¢f)

(5.1802)

(5.180b)

(5.180c)

(5.181a)
(5.181b)

(5.181¢c)

It is important to point out that the amplitudes v(z) and u(z), w(z) are identical
to those arising for plane waves in out-of-plane (Eq. 5.98) and in-plane motions
(Eq. 5.130), respectively. While for plane waves, the variation in the horizontal
x-direction is described by exp (—ikx), Bessel functions with the argument kr
arise for that one in the radial direction, applicable to three-dimensional waves
formulated in cylindrical coordinates. The variation in the circumferential

direction is specified as a Fourier series.

Using straightforward algebra, it is easy to show that the following equa-
tion holds for the stresses, analogous to that applicable to the displacements

(Eq. 5.180):
= 1

7o = Ik, Tl2) + LI kN)T,2)

|

20, = LI + - Tert,()
0'—, = _Jn(kr)[iaz(z)]

(5.182a)

(5.182b)

(5.182¢)
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The amplitudes 7,.(z) and 0,(z), 7,.(z) are specified in Eq. 5.100 and Eq.
5.132, respectively.

5.5.3 Dynamic-Stiffness Matrix

It also follows that the same dynamic-stiffness matrices as in the plane-

wave cases apply.
o ={ et =L ] G183
0. Toz2 2

with [S§] specified for the out-of-plane motion in Eq. 5.103, and

P, —Trz1 U
R —a, w
= Pl SEsv (5.183b)
P, Trz2 L3
R, O;2 W

with [S5.sv] specified for the in-plane motion in Eq. 5.134. The subscripts 1 and
2 denote the interfaces z = 0 and z = d, respectively. In cylindrical coordinates,
the displacement and stress amplitudes in the z-direction are not multiplied by i.
The dynamic-stiffness matrices are independent of the Fourier index n. For
the half-space, analogous expressions apply.

Distributed loads acting across the thickness of the layer can also be cal-
culated using the same concepts. The equations are not derived in this text.

SUMMARY

1. Asanintroductory example, the wave propagation in a rod with exponentially
increasing area is investigated. The motion diminishes along the axis of the
rod. For an undamped system, a cutoff frequency exists below which the
motion ceases to propagate. Above the cutoff frequency, the waves propagate
with a frequency-dependent apparent velocity (dispersion). The dynamic-
stiffness matrix of an undamped finite rod (in which waves propagate in both
directions) is real for the whole range of frequency. To achieve a unique solu-
tion for the infinite rod, it is not sufficient that the solution tends to zero at
infinity. The dynamic-stiffness coefficient of the undamped infinite rod (in
which only outgoing waves exist) is real for an excitation below the cutoff
frequency (spring with frequency-dependent coefficient) and complex above
(spring and damper with frequency-dependent coefficients). In general, for
increasing frequency, the spring and damping coefficients diminish and
increase, respectively. The damping coefficient is a measure of the radiation
of the energy of the outgoing waves. In a rod with material damping, the
motion exhibits an additional attenuation and a cutoff frequency no longer
exists (the motion, however, decays strongly for excitations below the cutoff
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w

frequency of the undamped case). The coefficient of the material damping
leads directly to a complex elastic-material modulus and affects indirectly
the dimensionless frequency. The dynamic-stiffiness matrix of the damped
finite rod is complex and converges for the limiting case of an infinite length
to that of the damped infinite rod. The convergence is, in general, quite slow
and exhibits oscillations. Introducing material damping increases the damp-
ing coefficient, especially for small frequencies, and decreases the spring
coefficient in the higher-frequency range.

. In a layered half-space, two types of (inclined) body waves exist: P- and S-

waves. For a P-wave, involving a volumetric strain only, the particle motion
coincides with the direction along which the wave propagates with the
(material-dependent) dilatational-wave velocity and is constant over a plane
perpendicular to it. For an S-wave, with a distortional strain only, the particle
motion takes place in a plane perpendicular to the direction of propagation
and is constant over this plane. This motion, which propagates with the
(material-dependent) shear-wave velocity, can be decomposed into a hori-
zontal SH-wave and a vertical SV-wave. Assuming the directions of propaga-
tion of the P- and S-waves to lie in a vertical plane, the SH-wave will result
in a (horizontal) out-of-plane displacement, which is independent of the
in-plane displacements caused by the P- and SV-waves. The phase velocity
(and wave number) is common to the P- and SV-waves. Introducing material
damping results in complex wave velocities.

Separately, for the out-of-plane and in-plane motions, the (symmetric)
dynamic-stiffness matrices of a layer and of the half-space can be established.
For a given frequency, they depend on the wave number (or the phase veloc-
ity), the material properties, and the depth of the layer. The stiffness matrices
of an undamped layer and of an undamped half-space are real and imaginary,
respectively, the latter indicating that energy is radiated toward infinity.
For a damped system, the diagonal terms of the dynamic-stiffness matrix of a
layer converge to those of the half-space for the limiting case of infinite
depth.

. In the horizontal direction, all displacements and stresses for plane waves

vary exponentially, whereby an expansion in the wave-number domain
(Fourier transform) is performed. In cylindrical coordinates, the displace-
ments and stresses are decomposed circumferentially in a Fourier series and
radially in a Bessel function. In the vertical direction, the variation is the same
for Cartesian coordinates (plane waves) and for cylindrical coordinates,
resulting in the same dynamic-stiffness matrix.

Distributed loads acting across the thickness of the layer are straightforwardly
processed. ‘

. The rate of horizontal energy transmission is equal to the sum of the scalar

products of the stress components and of the corresponding velocity com-
ponents acting on the plane.
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PROBLEMS

5.1. Itisa key feature of soil-structure interaction that for certain unbounded dynamic

a)

systems, a cutoff frequency exists below which (for an undamped system) no
waves propagate and thus no radiation of energy is possible. Consider the taut
string of area 4 and mass density p under the specified normal force N (tension)
and which rests on an elastic foundation with a spring coefficient £ shown in
Fig. P5-1a. The vertical displacement with an amplitude w does not affect N.
Discuss the different types of waves that can occur as a function of the excitation
frequency @, introducing the phase velocity c. Identify a dimensionless frequency
denoted as a,. For the semi-infinite string, determine the dynamic-stiffness coef-
ficient S, [i.e., the vertical-force amplitude P, (applied at one end) which will
result in a unit displacement amplitude w, in the same point]. Decompose
the nondimensional $, into a spring with a coefficient k, and a damper with a
coefficient c,.

u

—_— b) dx N

W,x + W,xx dx

Wox kwdx

!

1,71,1/1,1 T N fwpade
K¢

Figure P5-1 String resting on elastic foundation. (a) Semi-infinite string on
elastic and viscoelastic foundation; (b) equilibrium of infinitesimal element.
Solution:
Formulating the equilibrium equation in the vertical direction (Fig. P5-1b) leads
to the equation of motion
‘ k w?
Wyex —Nw—i-?%—w:O
with the velocity ¢; defined as
N
pA
Selecting a solution for w as exp (#¥x) results in
= aexp ('—1\/713~ Var —1 x) + bexp (+iJ—§,—Vaoi — lx)
With the dimensionless frequency a,.
o = /N
° ek

¢t =

Introducing the phase velocity ¢
S & S
€= ’\/ 1 — I/ao
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5.2.

leads to
L oX . X
w = aexp (——lw?) + bexp (—Hw?)
For an a, that results in a real value of ¢,
a>1 — w> C’\/—II:—/

waves propagate with a velocity c; the terms with a and b travel in the positive
and negative x-directions, respectively. The corresponding motion is dispersive
[c(@)]. For a, < 1 the motion diminishes exponentially with x, but does not
propagate. For a, equal to the cutoff frequency = 1, w = a -+ b (i.e., there is
no spatial variation of the motion).

When applying a load at 0 on the semi-infinite string, no incoming wave
(propagating in the negative x-direction) exists. Thus setting » = 0 and enforcing
w, at x = 0 leads to

w = w, exp (—i‘/% MEFTX)
The amplitude P, is equal to —Nw,, evaluated at x = 0
P, = —i~kN+/a} — 1w,
The static-stiffness coefficient /%N is used to nondimensionalize §,, leading to
S, =isa:—1
The coefficient §, can be split up into its real and imaginary parts as
S, =k, + ia,c,
where
fora, <1: k, =T — a2
c, =0

fora,>1: k,=0

co=Q/1—Elz

These spring and damping coefficients are plotted versus the dimensionless fre-
quency a, in Fig. P5-2 ({ = 0).

Assuming that the taut string of Fig. P5-1 rests on a viscoelastic foundation with
a spring coefficient k¥ and a hysteretic damping ratio {, repeat the discussion of
Problem 5.1. In addition, calculate the apparent velocity ¢, and the decay factor
per wavelength &,. Select { = 0.05 for the plots.

Solution:

In all equations, k is replaced by k(1 + 2{i). The phase velocity is complex

C

= ! — (4]
VT 10 + 2ija2] Res/ +ilmy/

While the real part of the argument of the square root in the denominator can
be positive or negative, the imaginary part is always negative, resulting in a

c
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< <y
= =
g 10 — {=0.05 & 10
'S [&]
2 os ---f=0 & 08
5 os W 06
8 04 O 944 — =005
© o2 1 £ o2 ] --=&=o0
Z 1 z !
a o}, T { T T T Lt s> o} T lr T T T
a (o] 05 10 15 2.0 25 g (o] 0.5 1.0 1.5 20 2.5
DIMENSIONLESS FREQUENCY a4 DIMENSIONLESS FREQUENCY [P
Figure P5-2 Dynamic-stiffness coefficient of semi-infinite string on elastic and
viscoelastic foundation.
negative value of Re o/~ and positive one of Im /. This leads for the w-term
with the integration constant b to
C; 4]
The second term indicates that the wave propagates (for all ) in the positive
x-direction with
Ca= — =Sl __
“ Rey ™
and the first term describes the attenuation caused by the material damping of
the foundation with
— Im »/ _)
d, = exp( Mmpe Van
No cutoff frequency exists for the damped case, although for a, < 1 &, is very
large.
The dynamic-stiffiness coefficient S, is equal to
S
S, = —i JEN T IoF Ja_ 1
o iNkN /1 + 20i T+ 20
Nondimensionalizing with the same frequency-independent factor »/AN and
then decomposing into &, and ¢, leads to
ko =Re~1 —a? +20i
Co = Re A / 1 — 1_+2£§l
ag
In Fig. P5-2, the spring coefficient k, and the damping coefficient ¢, are plotted
as a function of g, for the damped and undamped cases.
5.3. Prove that the dynamic behavior of the shear beam having shear area A, shear

modulus G, area A, and density p and resting on an elastic foundation with
spring constant k (Fig. P5-3a) is analogous to the string supported on an elastic
foundation (Fig. P5-1a). By transforming the corresponding variables, specify
the equations for the dynamic-stiffness coefficient S, of the semi-infinite beam.
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w
a ! b) dx
"’01 AGAP Q+Q,y dx
........ x _,»m '

[

-2 wPAdx

é§§§§§%%§§§§%%

Figure P5-3 Shear beam resting on elastic foundation. (a) Semi-infinite shear
beam on elastic foundation; (b) equilibrium of infinitesimal element.

Solution:

Formulating the equilibrium equation in the vertical direction and substituting
for the amplitude of the transverse shear force,

0 = GAw,,
leads to

k
w,xx—ij+—w 0

with the somewhat generalized shear-wave velocity ¢, defined as

¢t = Qf—_
s = DA
Comparing this equation of motion with that of the string leads to
N=GA
¢t = c?

The cutoff frequency is equal to

that is, the natural frequency of the rigid beam resting on the springs of the
foundation,
Introducing the dimensionless frequency a,,

the dynamic-stiffness coefficient S, follows:

S, = v GAk (k, + ia,c,)
where
fora, <1: k,=+/T—a?

¢, =0
fora,>1: k,=0

applies.
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5.4. As another example of an unbounded dynamic system which exhibits dispersion
and a cutoff frequency, examine the semi-infinite beam with moment of inertia
1, modulus of elasticity E, area A, and density p and which rests on an elastic
foundation with spring constant k (Fig. P5-4a). Disregard the work of the
transverse shear and the effect of rotational inertia. Calculate the moment ampli-
tude M, which has to be applied at the one end of the semi-infinite system to
cause a rotation amplitude @, = 1 with w, = 0 (i.e., one element of the dynamic-
stiffness matrix). Introduce dimensionless variables where appropriate. Discuss
the characteristics of the waves for the domain below the cutoff frequency.

EIAP ]
----- > X i——>oo
I

%§§§§§§§§§§

b) M+M,, dx
’ Q"'Q,xdx
M( ’ kwdx

Q -m2wPAdx

Figure P5-4 Beam resting on elastic foundation. (a) Semi-infinite beam on elastic
foundation; (b) equilibrium of infinitesimal element.
Solution:
Formulating the two equilibrium equations (Fig. P5-4b) and using
M = Elw,,,
the equation of motion in the amplitude of the vertical displacement w results

k o, p2PA, _
Wrxxxx +E—~1W a EIW 0

Choosing a solution for w as exp (iyx) leads to

4 — ZpA
V=0 EI
or introducing the dimensionless frequency a,,
2
a: =2 E‘ L
this results in
4T
— 5[4 _ k
V1,2 = + 7~ El
4
Poa= +i [% _ K

~ NI EI
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The solution for w is equal to

=aexp(—"4 L;_E)+bexp( m )

oo (-F  F) o (Y F)

For a, > »/k/E, the first and second terms represent waves propagating
in the positive and negative x-directions, respectively. The apparent velocity ¢,

is specified as
1

e = Y Aplo’El — kjw*El
The third and fourth terms decay and increase, repectively, exponentially with
increasing x. To calculate the dynamic-stifiness matrix of the semi-infinite beam,
only the first and third terms with the integration constants @ and c are kept.
For a, < A/k/E a very interesting behavior is observed. Introducing the
positive constant f,

k a?
f=m—7
leads to
Yi,2= (1 — i)%
Pi.a =+ (14 1)%

The corresponding solution for w is equal to

w = aexp (——%x) exp (—i%x) + bexp (+%x) exp ( %x)
+cexp(—% )exp( :;_é_ ) +dexp( % )exp( % )

The first term represents a wave propagating in the positive x-direction with the
apparent velocity ¢,:

Ca =3 ﬁ-ﬂ

~VkJW*El — Apjw?EI
Its amplitude decays exponentially with increasing x. The second and fourth
terms correspond to waves with amplitudes that grow exponentially. The third
term represents a wave propagating in the negative x-direction with an amplitude
that decays exponentially with increasing x. Thus to calculate the dynamic-
stiffness matrix of the semi-infinite beam, the first and third terms with the
integration constants 4 and ¢ are used (so-called standing wave).

The one element of the dynamic-stiffness matrix is calculated by enforcing
the boundary conditions w(x = 0) = w, = 0 and w,,(x = 0) = ¢, = 1, which
determines the integration constants a and ¢. The corresponding dynamic-
stiffness coefficient S, which is equal to the moment with the amplitude M, in
the global coordinate system is specified as

S, = —ElIw,,x(x = 0)
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The static value K is equal to

4k
K, = /2 EI EF
Nondimensionalizing S, and decomposing into the real and imaginary parts as
S, = K,(k, + ia,c,)

the following equations apply:

T 4
a<yE b= 1—"‘;!‘"

.
“o>«/f' ﬂ k

c‘,=ﬁﬁ*

For the range below the cutoff frequency, a standing wave is present. This also
occurs when rotary inertia terms (and the influence of the shear deformations)
are taken into consideration.

5.5. The rod with an exponentially varying area is used in Section 5.1 to illustrate
certain features of the dynamic-stiffness coefficient of an unbounded domain. It
should, however, not actually be used to model the soil, in contrast to the conical
shear beam, which represents an acceptable approximation for calculating the
horizontal and twisting dynamic-stifiness coefficients of a rigid circular base
(disk) on the surface of a half-space.

The shear beam with circular cross section is shown with the nomenclature
corresponding to the horizontally excited system in Fig. P5-5a. The horizontal
planes of the beam are assumed to displace only in the horizontal direction.
Determine the dynamic-stiffness coefficient .S, as a function of the radius a at
the surface, the angle &, the shear modulus G, Poisson’s ratio v, and the Eimep_—
sionless frequency a, = wal/c,, with the shear-wave velocity ¢, = A/ G/s/p
(p = density). Calculate & by enforcing the static-stiffness coefficient 8Ga/(2 — v).
Split the nondimensionalized dynamic-stiffness coefficient into the real and
imaginary parts k, and g,c,. Discuss the influence of a hysteretic-damping ratio
{. Select { = 0.05 for the plots.

Solution:

The origin z =0 is chosen at a distance a cot @ above the disk. In analogy to
Eq. 5.6, the equation of motion of the shear beam with the shear area A4
(= m tan2 o z2) is equal to
A, w?
7 74‘2'”,: + 'E'%'u =0
2 w:
Uyzz + ?un + ?‘2-—” = 0
or
wZ
(le)," + ?f(zu) =0
$
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Figure P5-5 Conical shear beam used for horizontal dynamic-stiffness coeffi-
cient. (a) Semi-infinite shear beam; (b) dynamic-stiffness coefficient.

The solution is equal to

‘= exp (—2)
z Cs

whereby the term with exp (+iwz/c,) is deleted to suppress the incoming wave.
Enforcing the boundary condition u(z = a cot &) = «, and calculating the load
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amplitude P, which is equal to the negative value of that of the transverse shear
force at the same location,

P, = —Gnra*u,(z = acot &)
results in

_ ®Ga ,
P, = cota (1 + ia, cot a)u,
Setting #Ga/cot & equal to the static-stiffness coefficient leads to

8
Q2 —wr

The nondimensionalized dynamic-stiffness coefficient S, is decomposed into
S, =k, + ia,c,

tan & =

where the spring and damping coefficients are equal to
k,=1

c,,=2gv7t

They are both frequency independent. The agreement with the exact values
shown in Fig. 7-19 (for v = 0.33) is astonishingly good.

For a damped half-space, the dynamic-stiffness coefficient, normalized with
the same static value, is equal to

So= (1 +20(1 + iay 25Vn)
with
af = =2 ~ a1 — i)
SN2
This results in
k,=1— ao%—g——l-’nc
e 2=V
°— 8
The dynamic-stiffness coefficients are plotted in Fig. P5-5b. The important dif-
ferences when compared to the undamped case are well captured, as can be
verified using the exact values presented in Fig. 7-20 ({ = 0.05).

It is worth mentioning that the equation of motion can also be solved by
using so-called half-order Bessel functions.

2
7E+Z

The conical shear beam shown in Fig. P5-6a can be used to calculate approxi-
mately the dynamic-stiffness coefficient for twisting of a rigid circular base (disk)
on the surface of a half-space. The horizontal planes are assumed to rotate
around the vertical axis. The variation of the shear stress is proportional to the
distance from the axis. Determine the dynamic-stiffness coefficient S, as a func-
tion of the radius a at the surface, the angle &, the shear modulus G, and- the
dimensionless frequency a, = wa/c,. Calculate & by enforcing the static-stiffness
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Figure P5-6 Conical shear beam used for twisting dynamic-stiffness coefficient.
(a) Semi-infinite shear beam; (b) dynamic-stiffness coefficient.

coefficient of the half-space 16Ga3/3. Split the nondimensionalized dynamic-
stiffness coefficient into the real and imaginary parts &, and a,c,. Plot k, and ¢,

versus a, for the undamped system and then introduce material damping with
a ratio { = 0.05.



176

Fundamentals of Wave Propagation Chap. 5

Solution:

The origin z = 0 is selected at a distance a cot & above the disk. In analogy to
Eq. 5.6, the equation of motion of the torsional-shear beam with the polar
moment of inertia J (= 7 tan* o z4/2) is formulated as

¢szz + ¢yz + _2'¢ - 0

w?
¢’zz + 7¢5z + zf¢ = 0
5
or introducing a dimensionless coordinate £ in the vertical direction,

— @
=

4
bee + 50 +9=0
4
The general solution equals
S DY i 1 ;
¢ = 2 [a( P4 1) exp (—ié) + b(if 1) exp (+t§):l

Delefing the incoming wave (b = 0) and changing the integration constant to
d leads to

¢ =alt ’fexza(ﬂé)
Enforcing the boundary condmon at the disk ¢ (& = a cot & w/c,) = ¢, results
in
_ a® cot? o’ 1+ i e _a_)_)
$= ¢"c§(1 + ia cot awfc;) &3 exp [ l(f acot “c, J

Determining the amplitude of the twisting moment 7|, which is equal to the
negative value of that of the torsional moment of the beam at the same location,

4 3
T, = _Gna ®,.(z=acota) = G72ta a,,¢,¢(f = g cot acg)

leads to

T, = Yeota !~/ +ia 5 @)]4,

The function f(a,) is specified as

_ 1 _[®n/32)a,)
f@) = 3 T [or3Da

Setting 3mGa3/(2 cot &) equal to the static-stiffness coefficient results in

32
tan o0 = o7

The nondimensionalized dynamic-stiffness coefficient S, is decomposed into
S, =k, +ia,c,

where (for the undamped case) the spring and damping coefficients are equal to
ko =1—f(a,)
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5.7.

5.8.

5.9.

€, = g—’ztf (a,)

They are plotted as a function of a, in Fig. P5-6b. When comparing these curves
with the exact values shown in Fig. 7-19, it is observed that the results are similar.
The agreement is, however, not as good as for the horizontal dynamic-stiffness
coefficient (see Problem 5.5).

When introducing material damping, G is replaced by G(1 + 2{i). Non-
dimensionalizing §, with the same static value, k, and a,c, follow as the real and
imaginary parts.

ko =1 = f@)(1 + 3508)
¢ = 93—7;-f(a,,) [1 T 12(%)34’ + 4§,3,—ioC]

The two coefficients are plotted in Fig. P5-6b for { = 0.05.

Derive the coupled equations of motion for harmonic excitation expressed in
the displacement amplitudes

GV + (A + GVttypx + Vyyx + Wypn) = — pO2u
GV + (A. + G)(”,xy + v,y + w’zy) = —pCOzU
GV2w + (A + G)it,xs + v,y; + Wyas) = — p®w

Verify that the off-diagonal term of the dynamic-stiffness matrix of a damped
layer [S%4] (Eq. 5.103) converges to zero for the thickness d approaching infinity.

Solution:

The off-diagonal term is inversely proportional to sin ktd. Expanding this expres-
sion leads to

sin [Re (ktd) 4+ i Im (ktd)]
= sin Re (ktd) cos i Im (ktd) + sin i Im (ktd) cos Re (ktd)
= sin Re (ktd) cosh Im (k#d) + i cos Re (ktd) sinh Im (ktd)

As both sinh Im (k¢d) and cosh Im (ktd) converge to +oo for d — oo, the off-
diagonal term will vanish in the limit.

In the vertical direction, the variation of the out-of-plane motion v(z) is specified
by an exponential function. If the wavelength is large compared to the depth of
the layer, a linearization is possible. The transcendental functions are replaced
by algebraic ones. By expanding the trigonometric functions sin k¢d and cos ktd
in a Taylor series, derive the discrete dynamic-stiffness matrix of a layer [S&il

Solution:

Substituting
sin kid = krd — E24°
cosktd=1— k*12d>

2
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in Eq. 5.103 and using Egs. 5.95b, 5.93, and 5.94 leads to

L1._ G 1—1} k2d021jl_ ,pd[2 1
[SSH_d[—l T8 1 2] 9% 2

The first and last terms are associated with the standard static-stiffness and the
consistent mass matrices, respectively, for a linear expansion in the vertical direc-
tion of the displacement.

Assuming the wavelength to be large compared to the depth of the layer, verify
that the dynamic-stiffness matrix of the layer [S£ sv] is equal to

G -G
1 A+ 2G —( +26)
[Sll"-svlzg e G
—( + 26) A+26
A—-G ~A—-G
k| A—-G A+G
T2 A+G -A+G
—-1—G —A+G
2(A + 26G) A+ 2G 2 1
k2d 2G G d 2 1
T8 2420 24 + 2G) —wz%l 2
G 2G 1 2

See also Problem 5.9.



FREE-FIELD
RESPONSE OF SITE

6.1 DEFINITION OF TASK
6.1.1 Three Aspects When Determining Seismic Environment

The first part of any soil-structure interaction analysis where the loads
are not applied directly to the structure is the calculation of the free-field
response of the site, that is, the spatial and temporal variation of the motion
before excavating the soil and superimposing the structure. Theoretically, this
task can be achieved using a model which also includes the source. However,
for seismic excitation, the many uncertainties in the source mechanism and in
the geological parameters along the transmission path, and the sheer size of
this model, dictate a much simpler approach. Starting from the control motion
assumed to act at a specific location in a single control point, the seismic environ-
ment is calculated. This task cannot be solved without making far-reaching
assumptions as to the wave pattern. The same control motion acting in the same
control point can arise from many different types of waves, for example, from
vertically incident or inclined body waves or surface waves. The choice will,
in general, affect the variation of the motion with depth and in the horizontal
direction. In connection with Fig. 4-2, it is discussed quantitatively that inclined
body waves result in the motion propagating horizontally, in contrast to vertical
incidence of the waves. This results in a rotational component in the kinematic-
interaction analysis of a surface structure (Fig. 4-3), modifying significantly the
inertial loads of the inertial-interaction analysis.

The first aspect, the selection of the control motion, is discussed in Section
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3.3.3. The second, the choice of the control point, is examined immediately
below. The third aspect (i.e., identifying the wave pattern) is probably the least
understood. The direction of propagation and the orientation of the planes of
incidence will depend on the location of the site relative to the source of the
earthquake. However, as the engineering seismologist cannot give advice to the
analyst in sufficient detail, extreme cases are calculated assuming, for example,
the control motion to arise from only one wave pattern with limiting parameters.
The free-field motions (or even the final results of the total soil-structure inter-
action analyses) are then compared. Conservative choices of the wave patterns
have to be made, which can turn out to be different for the various results used
for design. It is therefore important to examine in detail the various wave pat-
terns which possibly can occur for a specific site, and to gain insight into the
expected free-field response. This is achieved by extensive parametric studies in
this chapter. Of course, these three aspects are interrelated.

6.1.2 Location of Control Point

Three choices exist for the location of the control point associated with the
site, which are illustrated in Fig. 6-1. The site consists of layers of soil resting
on bedrock. The control point should be selected on the ground surface of the
free field (point 4) or at an assumed rock outcrop (point B), that is, on the level
of the rock, but assuming there is no soil on top, or, less frequently, at the ground
surface of another layered system which can have different soil properties
(point C). The latter choice allows the earthquake records of a seismic station
with known soil properties (which will, in general, differ from those of the site)
to be used as the control motion. In all cases, the control point is located at the

BEDROCK|SOIL LAYERS

Figure 6-1 Selection of control point for seismic input (after Ref. [5]).
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surface, where the strong-motion earthquakes are normally recorded. Under no
circumstances should the control point be selected at some (arbitrary) depth
below the surface, for example, within the site on the level where subsequently
the basemat of the embedded structure will be placed. At such a location within
the site, the frequency content of the motion will depend strongly on the depth.
This is illustrated in Fig. 5-10, where significant dips (at the natural frequencies
of the soil column built in at the depth) appear in the amplification from the
top to the depth, which leads to peaks in that in the other direction (from the
depth to the top). Assuming a broad-banded spectrum at the depth will thus
result in unrealistically high values at the surface for the same frequencies. The
whole motion will be distorted. The same occurs if a historic earthquake recorded
at the surface or (as an exception) within a site with different material properties
is used. The reflections of the waves at the free surface cause this effect. Many
other examples, also for more general wave patterns, are found in this chapter.

Starting from the control motion with an assumed wave pattern in the
selected control point, the spatial and temporal variation of the free-field
response of the site has to be calculated on the line which will subsequently form
the structure-soil interface. The latter is shown in Fig. 6-1 for an embedded
structure founded on piles. This free-field motion with the amplitudes {uf}
appears in the load vector of the basic equation of motion (Eq. 3.9). The sub-
script b denotes the nodes on the structure-soil interface. For the selection of
the control points B and C, it is assumed that the source (the incident waves)
in the bedrock is the same as for the site. The properties of the bedrock are also
identical.

The equations of motion for calculating the spatial variation of the free-
field response for the three possible locations of the control points are derived
in Section 6.2. The mathematical formulation for inclined body and surface
waves is developed. The vertical variation is characterized by various amplifi-
cations, the horizontal by dispersion and attenuation. The mathematical
formulation is then applied to the half-space in Section 6.3 and to the single
layer resting on a half-space in Section 6.4. As the calculation of the free-field
response of a site represents the most important factor in soil-structure interac-
tion, it is appropriate to discuss this aspect in depth. To identify the key features,
a vast parametric study is performed for the out-of-plane and in-plane motions
in Sections 6.5 and 6.6, respectively. Harmonic excitations for sites consisting
of a layer with homogeneous properties and with increasing stiffness resting on
bedrock are investigated. An actual soft site and a rock site are also examined in
Sections 6.7 and 6.8. These detailed analyses allow well-founded conclusions to
be stated in the summary at the end of this chapter. The reader who does not
place great value on understanding the physical phenomenon and gaining experi-
ence can simply browse through Sections 6.5 to 6.8. The mathematical formula-
tion is fully developed and sufficiently applied in the earlier sections.
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6.2 AMPLIFICATION, DISPERSION, AND ATTENUATION

For all three choices of the control point, the displacement and the surface
traction, which is equal to zero, are prescribed simultaneously along the
boundary (free surface). Along the remaining boundary, no conditions are
imposed. This is not the classical boundary-value problem.

The equations governing the out-of-plane and in-plane motions are
uncoupled (Sections 5.3 and 5.4). This allows the computational procedure to
determine the spatial variation of the free-field motion to be developed using
the out-of-plane motion only. Only those aspects that are not analogous or
cannot straightforwardly be transferred will be discussed for the in-plane
motion.

Taking the Fourier transform of the control motion in the time domain
leads to frequency-dependent amplitudes. As will become apparent in this sec-
tion, making certain assumptions on the wave pattern determines the wave
number k. For example, for vertically incident waves, kK = 0. This is analogous
to a spatial Fourier transform into the wave-number domain of the motion.
The spatial variation of the motion (in the k-domain) can be calculated assembl-
ing the stiffness matrices of the individual layers and of the half-space for plane
waves. Use is made of reference subsystems of the soil as in Section 3.1.

6.2.1 Dynamic-Stiffness Matrix of Site

The site with a stiffness varying with depth shown in Fig. 6-2 is discretized
with n — 1 layers of constant material properties resting on the half-space with
index n. The nodes coinciding with the interfaces of the layers are numbered from
1 at the free surface to n at the top of the half-space. The dynamic-stiffness
matrices for the out-of-plane motion of the layer i [S]; and of the half-space

At X
1 oA
7 + 2.
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Figure 6-2 Layered site and reference soil system with nomenclature for
out-of-plane motion (after Ref. [5]).
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S&, are specified in Eqgs. 5.103 and 5.104, respectively. With the nomenclature
illustrated in Fig. 6-2, the force-displacement relationships are formulated as

o, | Vi
{QHI} _|: sal{v‘ﬂ} (6.12)

Qn = Sgﬂvn (6' lb)

It is important to realize that [S&); is the rigorous dynamic-stiffness matrix of
a homogeneous layer of finite depth d for all excitation frequencies. In general,
the discretization will consist of only very few layers which have different physical
properties. Moreover, the rock is directly represented as a half-space and not
modeled as a series of layers.

As discussed in Section 5.3.1, the variation of the displacement amplitude
v(z, x) in the x-direction is determined by k (Eq. 5.97) and is thus constant with
depth for the layer. The boundary conditions at the interface of two layers com-
pel the value of k to be constant for the total system. For a given w, the phase
velocity c also has to be constant (Eq. 5.94). This has to be taken into considera-
tion when determining [S#g), and S§u.

For the in-plane motion, [Sk.v); relates the displacement amplitude # and
w at nodes 7 and i -- 1 to the load amplitudes P and R at the same nodes (Eq.
5.134). The matrix [S% sv]; is specified in Eq. 5.135. Again, k and ¢ have to be
constant for all layers and for the half-space.

Assembling the matrices of the individual elements, the discretized
dynamic-equilibrium equation of the site results in

[Ssul{v} = {Q} (6.2)
The dynamic-stiffness matrix of the total system is denoted by [Ssul; {v} is the
vector of the displacement amplitudes with elements v, to v, and {0} the vector
of the external load amplitudes. As in the assembling process, [S&ul; of two
adjacent layers are partly overlapped, the symmetric [Ssx] is tridiagonal. Also,
[Sp_sv] is strongly banded.

6.2.2 Site Amplification for Body Waves

The site-amplification problem for body waves is discussed first, for which
incident waves in the half-space propagating from the source to the site exist.
For an assumed wave pattern consisting of body waves only, the control point
is selected at the ground surface of the site (point 4 in Fig. 6-1), at an assumed
rock outcrop (point B), or at the ground surface of another layered system
(point C). The angle of incidence in the half-space ysu determines the phase
velocity ¢ (Eq. 5.93, with m, = cos ysg). The wave number k, which enters
in the determination of the dynamic-stiffness matrices, is thus also specified.
As m,, in the half-space is always smaller than or equal to 1, ¢ will lie between
¢* of the half-space (ysz = 0) and infinity (wsa = 90°) for body waves. This also
applies when calculating the site response using points B or C, as it is assumed
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that the incident waves in the bedrock and its material properties are the same
as those present at the site.

The location of the control point influences only {Q} in Eq. 6.2. For a
prescribed control motion v, in point A4, all exterior-load amplitudes {Q} are
equal to zero. Setting v, = v, and using the standard Gaussian elimination, the
free-field-displacement amplitude v, in node j results. The amplitude v; is in
this case independent of the properties of the system below node j. This of
course also holds for the stresses and strains at node j.

For a prescribed control motion », in point B, {Q} can be calculated
analogously as the load vector in the basic equation of soil-structure inter-
action, Eq. 3.9. For the site, the layers and the bedrock represent the two
substructures, the first corresponding to the structure and the second to the soil
in the soil-structure system. This determines the left-hand side of the equations
of motion. The bedrock is regarded as the reference system of the soil. The
load vector will thus consist of the product of the dynamic-stiffness matrix of
the bedrock S%; and the (free-field)-motion vector v,. The nth element of {Q},
0., can be formulated as

Qn = Sg}ivc (6'3)

all other elements being zero. The displacement amplitude »;, which again
follows from Eq. 6.2, is a function of the properties of the total system. See
Problem 6.1 for an application.

For a prescribed control motion v, in point C, the layers of the actual site
and the bedrock still represent the two substructures. The bedrock and the
layers (with point C) are regarded as the reference soil system. The free-field
motion of this system is calculated first. As the control motion is prescribed
on the ground surface, the procedure discussed in connection with the control
point A, but applied to the reference soil system, is used. As the layers of this
reference system will, in general, be different from those of the site, a dash is
used to denote variables associated with the reference system. The only nonzero
element Q, is calculated as

0, = S%av, + @, (6.42)

The amplitude v, is the free-field motion of the reference-soil system in node n.
The load amplitude Q, is calculated from Eq. 6.1a as the product of the lower
row of [Siu],_, and the vector with the two elements v, = v,_, and v, = v,.
The first and second terms on the right-hand side of Eq. 6.4a represent the load
amplitudes of the elements below and above node n, respectively, calculated as
the products of the corresponding stiffness matrices and the free-field-motion
vector of the reference soil system. Denoting the dynamic-stiffness matrix of the
reference soil system in node = as S.7, 0, can also be written formally as

0, = S/ (6.4b)

with v, = v,. The agreement with the load vector of the basic equation of
motion (Eq. 3.9) becomes visible. The right-hand side is equal to the product
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of the dynamic-stiffness coefficient of the free field S, (discretized in the node n
at which the soil layers of the actual site are introduced) and of the free-field
motion v/ in the same node. Both factors are determined in the reference soil
system. For the control point C, the dynamic equation of motion (Eq. 6.2 with
Eq. 6.4b) is illustrated schematically in Fig. 6-3. The analogy to the physical
interpretation of the basic equation of motion shown in Fig. 3-4 is obvious. The
choice of the control point at the ground surface of another site represents an
exception. This case is thus not addressed further in this text. Selecting the con-
trol motion to act in an outcrop of rock (control point B) follows as a special
case.
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Figure 6-3 Physical interpretation of equation of motion of site with control
point on ground surface of reference soil.

For the in-plane motion, selecting, for example, the angle of incidence m
the half-space w of the P-waves (Fig. 6-4) determines not only ysy but also the
wave number k (I, = cos w», Eqgs. 5.126 and 5.127). The procedure for calculat-
ing the free-field response is analogous.

6.2.3 Surface Waves

For a wave pattern consisting of surface waves, for which no source exists,
no energy is propagated from infinity toward the site. As discussed in connec-
tion with the derivation of the dynamlc -stiffness matrix of the half-space
(Eq. 5.104), this condition leads to excluding the incident waves. If Agy were set
equal to zero, a vanishing control motion in point B (Fig. 6-1) would result.
The control point can thus not be selected at the outcrop of rock. For an assumed
wave pattern consisting of surface waves, only the control point 4 at the ground
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surface of the site is meaningful. Suppressing the incident waves leads to @, =
0, = 0. Setting the amplitude-load vector { Q} = {0} in the discretized dynamic-
equilibrium equations of the site (Eq. 6.2), an eigenvalue problem arises. The
surface-wave motion is thus equal to the natural modes of wave propagation of
the site. For a given frequency w, the only “free” parameter is the phase velocity
c¢; only distinct values of ¢ associated with the various so-called modes exist.
For these values of c¢(w), the determinant of the dynamic-stiffness matrix [Sgy]
vanishes, leading to nontrivial solutions for the displacement amplitudes {v}.
These are then scaled to form the control motion. Details are described in sub-
sequent sections.

To discuss the possible range of ¢ for surface waves, damping is neglected.
For a surface wave, the motion in the half-space has to decay for increasing
depth. Examining this motion Bgy exp (—iktz) specified in Eq. 5.98 (with
Asy = 0) leads to the condition that the value ¢ has to be negative and imaginary.
This results in m, > 1, based on Eq. 5.95b. Finally, with Eq. 5.93, ¢ < ¢, of
the half-space follows. It can be shown that the lower bound of the phase velocity
equals the shear-wave velocity of the top layer.

As the “exact” expressions for the layer-stiffness matrices are used, the
eigenvalue problem is transcendental and has to be solved iteratively by search
techniques. For no damping, and in the phase-velocity range of interest, the
determinant is real. The various so-called dispersion curves c(w) are determined
as follows. For each curve, the cutoff frequency is calculated first by setting
¢ = ¢, of the half-space and varying w. By increasing w and decreasing ¢ simul-
taneously, the dispersion curve then follows, up to the @ of interest. For nonzero
damping, the determinant and the phase velocity are complex. For a specified
(real) w, the real and imaginary parts of ¢ are iterated until the real and imaginary
parts of the determinant vanish. It is computationally efficient to vary ¢ and @
simultaneously based on a steepest-descent procedure.

For the in-plane motion, analogous methods are applicable to calculate
the surface waves. The range of the phase velocity ¢ is somewhat different and
will be discussed in Section 6.6.4.

Valuable physical insight can be gained by examining body and surface
waves systematically in undamped and damped sites. It is possible to determine
in which cases the variables are real, imaginary, or complex. Without loss of
generality, this investigation can be performed for a half-space (Section 6.3) and
for a single layer on a half-space (Section 6.4).

6.2.4 Amplifications

To describe the variation of the motion with depth, various amplifications
can be defined. Any two locations within the site or at a fictitious outcrop of
rock could be selected. For the out-of-plane motion, results will be shown for
three ratios of the absolute values of the displacement amplitudes. [Besides the
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amplitudes of the waves Agy and Bgy, the displacement and stress amplitudes
¥(2), 7,,(2), and 1,,(z) are complex values.] First, within the site (Fig. 6-2) from
the top (v, = v,) to the base (v, = v,): |, |/|,]; second, from outcropping bed-
rock to the top of the site: |v,/|v,|; and third (as a redundant quantity), from
outcropping bedrock to the base of the site: |,/|v,|. For the in-plane motion,
results will be displayed for two ratios of the absolute values of the displacement
amplitudes. First, within the site (Fig. 6-4) from the top (u,, w,) to the base
(4, W) |ts)/ ], |wyl/lw,|; and second from outcropping bedrock (u,, w,) to
the top of the site: |«,}/|%,]|, |w,|/|w,|. In addition, results are plotted for the
ratios of the absolute values of the displacement amplitudes at the top or at
the base of the site and the absolute values of the amplitudes of the incident
‘waves (dg, Asy) in the half-space: |#,|/| Asv], | wel/l Ael, |4y |/l Asv ], and [ w, |/| Ae|.

Yy ¥,
A;/WW*““ As % Yw,
Figure 6-4 Layered site and reference

soil system with nomenclature for J7 z %i

in-plane motion. Ay,

6.2.5 Apparent Velocity and Decay Factors

The variation in the horizontal direction of the displacements and stresses
depends only on the wave number &, as can be seen from Eq. 5.97 and 5.129.
As is visible from Eqgs. 5.93 and 5.94, k and the phase velocity ¢ are in general
complex. This factor can be split up as follows:

ooN _ imx
exp (—ikx) = e"p[ Re (o) + i Im (0)
_ ayn| i Re(c) :| : l:__a)Im (0) :I
= epr: TP x |exp TP x
The first part describes the propagation with a (real) apparent velocity ¢, in the
positive x-direction (exp iw[t — x/c,])

6.5)

(6.6)

the second the attenuation of the motion. For a distance x equal to the wave-
length A = 27mc,/w, the (real) decay factor per wavelength 0, results.
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5. — v(x + 2nc,/o) _ u(x + 2rc,/w)  w(x + 2z;e,/w)
AT v(x) - u(x) o w(x)

- ool ]

For a distance d, the decay factor equals

vix+d) ulx+d) _ wkx+d wlm(c

o=y =T e[ ] e
For a real value of ¢, ¢, = ¢ and no attenuation occurs. In formulating Eq. 6.7,
the same phase velocity c is assumed for the out-of-plane and in-plane motions.
The equations for ¢, and &, are identical to those for the rod with increasing
area (Eqgs. 5.50 and 5.51).

The apparent velocity ¢, also determines (at a specific location) the spatial
variation of the free-field motion. For a structure with a rigid base, it is mean-
ingful to describe the seismic input acting on the structure using the so-called
scattered motion {uf}, which is equal to that of kinematic interaction {u*}
(Eq. 3.29b). This determines the contribution of the seismic excitation to the load
vector of the basic equation of motion formulated in total displacements (Eq.
3.20) or that of inertial interaction (Eq. 3.32). This scattered motion {uf] is
calculated as a function of that of the free-field {#]} using Eq. 3.19. For a surface
structure with a rigid basemat, the dynamic-stiffness matrix of the soil and its
inverse appear in this equation. The influence of the stiffness of the soil will
thus be very small. The wave effects can be characterized by the ratio of a repre-
sentative length of the basemat and of the apparent wavelength 2nc,/w (Fig.
4-2). For a circular basemat with radius a, wa/c, can be used to characterize the
wave effects. As already discussed qualitatively in connection with Fig. 4-3,
the out-of-plane motion will result essentially in a translational component with
amplitude v# and in a torsional component with amplitude y# (see Problem 4.3).
The in-plane motion, propagating in the horizontal x-direction, leads to two
translational components with amplitudes ## and w# and to the rocking compo-
nent with an amplitude 8¢ (see Problems 4.2 and 4.4). The dependency of these
amplitudes on wa/c, is discussed in Section 7.4.3 (Figs. 7-30 and 7-31).

(6.7a)

6.3 HALF-SPACE

The dynamic behavior of the half-space represents an essential element in the
site-response analysis. In addition to being the simplest site, the motion on the
free surface of the half-space (multiplied by the dynamic-stiffness matrix) deter-
mines the load vector of the equations of motion of the total site if the control
point is selected at the rock outcrop (Eq. 6.3 and analogously for the in-plane
motion). As the half-space in this text is referred to primarily in the latter case,
the superscript R is introduced when appropriate. Complete agreement is thus
reached with the notation applied in the vast parametric study in Sections 6.5
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and 6.6. The subscript o (for outcropping) denotes the motions at the free
surface of the half-space.

6.3.1 Incident SH-Waves

The out-of-plane motion is simple to analyze. The displacement amplitude
at the free surface v, of the half-space can be expressed as a function of the
incident-wave amplitude 4%;. Substituting 7,,, = 0 in Eq. 5.101 results in

BlsQH = Agﬂ (6-8)
v, = 2A% (6.9)

The out-of-plane displacement is thus independent of the angle of incidence
w®y and is, also for a damped system, in phase with the amplitudes of the
incident and reflected waves, the two amplitudes being the same. The phase
velocity c is specified by the angle of incidence y§u (Eq. 5.93 with m® = cos y§u).
It is always larger than the (complex) shear wave velocity c3*. The same relation-
ships also apply at the free surface of a layer.

No surface waves exist for the out-of-plane motion. Setting the dynamic-
stiffness coefficient of the half-space S%; (Eq. 5.104) equal to zero results in
¢ = c¢*R, This is not a new wave pattern, but represents an inclined SH-wave
with w& = 0.

6.3.2 Incident P-Waves

The in-plane motion is examined next. Introducing the boundary condi-
tions at the free surface [1,,(z = 0) = 0, ,(z = 0) = 0] in Eq. 5.132, the ampli-
tudes of the reflected waves BE and B%, can be expressed as a function of the
incident waves AR and ASy.
b3

! R
BS 4R — 1 — (PP T4l — @] || 45

. 1 L ¢
= ToRK —({R\212 %R |
e IR B E (R GO N R R G |

5

(6.10)

While for an unbounded domain, the P- and SV-waves can propagate indepen-
dently, it can be seen from Eq. 6.10 that introducing a free surface e.g., an
incident P-wave leads to a reflected P- and SV-wave. This phenomenon is
referred to as “mode conversion.” Substituting Eq. 6.10 in Eq. 5.130 formulated
for z = 0 results in

1 A%R
4% |CeR20m1 — (] | 43
R A | SR
38R T — (B2 : *R )
(At (t)]t2s3[1~(tR)2]E —Cardst |48
H P

This represents the motion at the free surface as a function of the amplitudes
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of the incident waves. It applies to a half-space and to a layer. In particular,
u, and w, denote the outcropping motion of the bedrock (Fig. 6-4).

To study the characteristics of the motion at the free surface caused sepa-
rately by an incident P- and an incident SV-wave, 4%, = 0 and 4% = 0, respec-
tively, are introduced into Eq. 6.11, leading to

. R\2
% 10 (6.122)
for the incident P-wave, and to
2 R
1‘:’_: = 7wy _S(,R)z (6.12b)

for the incident SV-wave. ,

The real phase velocity ¢ is specified by the angle of incidence w§ for the
incident P-wave (Eq. 5.126 with /2 = cos y¥), or by y for the incident SV-wave
(m® = cos wk,). The direction cosine of the angle of incidence of the reflected
wave of the other type also follows from Eq. 5.126. For instance, for the incident
P-wave with prescribed /2, m® = cos y%, of the reflected SV-wave is determined.
For P- and SV-waves, c is always larger than ¢*® and c**, respectively. Besides
depending on w3 and y¥, the coefficient matrix on the right-hand side of Eq.
6.11 is a function of Poisson’s ratio v® and of the damping ratios {? and (%,

At first, the motion caused by incident P-waves at the free surface of a
half-space (4%, = 0) is discussed. In Fig. 6-5, the ratio of the vertical-displace-
ment amplitude and of the amplitude of the incident P-wave, |w,|/| 43| and the
ratio |u,|/| AF| are plotted versus the angle of incidence yg for no damping
(Eq. 6.11). Poisson’s ratio v® is varied. As expected, |w,| = 2| A%| results for
vertical incidence. Decreasing y§ reduces |w,|. Over a significant range of y?%,
| u,| bears comparison with | w, | for smaller values of vX. The horizontal amplitude
| u,| depends strongly on vX. As the ratio w,/u, in Eq. 6.12a is a negative real value

3
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R = .33 Iwo!/IRFI
o
: 24 e 'DR = .45
[em _——— - ==
re -~ e
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g / P >\/
= / > N
= / e N R
-] ~ - lugl/1Rel
AN < °
g:. // \\
a G e N
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/'.','." \
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ANGLE OF INCIDENCE o} [°]

Figure 6-5 Free-surface motion versus angle of incidence, incident P-wave,
{R =0,
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for all w® and v®, w, and u, are 180° out of phase. This is also verified by project-
ing the particle motion of the P-wave onto the global axes. The component on
the x-axis has the opposite sign of that on the z-axis (Fig. 6-4). The motion result-
ing from the incident P-wave is symbolically displayed in Fig. 6-6 for R = 45°
and, for the sake of comparison, for vertical incidence. The ratios shown in
Fig. 6-5 do not change for a damped half-space if {® = {®. For this case, the angle
of incidence of the reflected SV-wave y¥, is also real (m® in Eq. 5.126), as c}/c}
is real (Eq. 5.88). For (% = (%, |w,|/|A¥| and |u,|/| 4| are modified somewhat
and w, and u, are no longer 180° out of phase. The angle y/§y becomes complex.
For instance, for {% = 0, {* = 0.20 and for y§ = 45°, c;/ci = 2 (corresponding
to v® = 0.33 for the undamped case), |u, |/| A%| and | w,|/| A} | change by a factor
of 1.06 and 1.03, respectively, while w, and u, are 161° out of phase. For this
example the phase velocity ¢ is real. The decay factor is 1 (Eq. 6.7) and no
attenuation occurs in the horizontal direction. Of course, for {® == 0, attenuation
occurs.,

P-WAVE SV-WAVE R-WAVE

Vi=45° vh,=90°
{ =
o £ .
4\ D‘ \V W wo(t)
yR=90° wh,=65° wh,=55° [w§,=30°

Z uo(f)

Figure 6-6 Free-surface motion of half-space, v& = 0.33, {® = 0.
6.3.3 Incident SV-Waves

An incident P-wave will always lead to reflected P- and SV-waves. How-
ever, a reflected P-wave does not exist for a sufficiently shallow incident SV-wave,
as IR = cos & determined from Eq. 5.126 would turn out to be larger than 1.
The (limiting) angle of incidence of the SV-wave, for which a reflected P-wave
still arises, is called the critical angle y.,. The cosine of this critical angle follows
from Eq. 5.126 by setting I = 1:

- Fr — arctan /T — (6.13)
Y. = arccos R = arctan /y——-z .
For y& < W.., s of Eq. 5.128a would be a negative imaginary valu. It is visible
from Eq. 5.130 that the motion associated with By decays with depth. (Actually,
for the case {, # {,, s is complex with a negative imaginary term.)

Next, the motion at the free surface of a half-space caused by an incident
SV-wave (4% = 0) is examined. The ratios |, |/| A§v| and |w, |/| A%, | are plotted
versus the angle of incidence w%, for no damping in Fig. 6-7 (Eq. 6.11). The
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Figure 6-7 Free-surface motion versus angle of incidence, incident SV-wave,
(R =0.

results are presented for two Poisson’s ratios vX. For vertical incidence |u,| =
2| A8y |. The critical angle y., depends only on Poisson’s ratio v® (Eq. 6.13) and
varies from 45° (v® = 0) to 90° (v® = 0.5). For v® = 0.33, y,, = 60°. For
Ve < Wsv < 90°, the motion is in phase, as can be verified from Eq. 6.12b.
For decreasing y3§y in this range, |u,| will, in general, increase. The vertical
amplitude w, = 0 for y& = y.,. For 45° < y&, < w,,, the motion is called
prograde; that is, the vertical motion lags behind the horizontal by 90°, the total
motion being clockwise. The horizontal amplitude u, = 0 for y&, = 45°. For
wév < 45°, a retrograde motion with respect to the direction of propagation
results; that is, the horizontal motion lags behind the vertical by 90° for the
coordinate system selected, the total motion being counterclockwise. The three
different motions of the incident SV-wave occurring for &, = 65°, 55°, and 30°
are shown in Fig. 6-6. If {¥ = {3, the curves in Fig. 6-7 still apply, based on the
same reasoning as explained for P-waves. If {® = {® |u,|/| A&/ | and |w,|/| A,
are changed slightly and the phase angle between w, and u, is modified, similarly
as for the case of P-waves. However, close to the critical angle, large differences
arise. At y§, = 60°, the vertical motion bears comparison with the horizontal,
which is, however, reduced when compared to the case of uniform damping.
These results are not shown.

6.3.4 Rayleigh Waves

For surface waves, no incident waves are present (4p = Asy = 0). Invert-
ing Eq. 6.11 and enforcing this condition by setting the determinant equal to
zero results in

[1 — (B2 = —4dsRR (6.14)
(Obviously, directly equating the determinant in Eq. 6.11 to zero leads to the
same equation.) This so-called Rayleigh wave equation is also derived by setting
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the determinant of the dynamic-stiffness matrix of the half-space [SE.sv] (Eq.
5.135) equal to zero. The corresponding motion of the surface waves, called
Rayleigh waves for the in-plane motion, at the free surface follows from the
inverse of Eq. 6.11 using Eq. 6.14 as

w,  2s%

w = T= @ (€19
Substituting Eqs. 5.126 and 5.128 in Eq. 6.14, the phase velocity ¢ (normalized
with ¢*®), called the Rayleigh wave velocity, follows as a function of v*.

cz 2 cZ 62 .
2 - o] —4\/1_W\/1_(c;':_“)2=° (6.16)
As the frequency does not appear in this equation, the phase velocity ¢ is a
constant and thus the Rayleigh wave (R-wave) of the half-space is nondispersive.
At first, no damping is assumed. Assuming that ¢ = €c§, where € is a very
small number and substituting in Eq. 6.16 leads to —2 + 2€2(c¥/c})?, which is
negative. Assuming that ¢ = c¥ results in unity. It thus follows that Eq. 6.16
has at least one real root between ¢ = 0 and ¢ = c®. Three roots actually exist,
but two of them can be eliminated, as the corresponding motions associated with
B, and By in Eq. 5.130 do not decay with depth. Hence, only one R-mode
exists. For v8 = 0, ¢ = 0.874c®; for v® = 0.33, ¢ = 0.933¢%; and for v*® = 0.5,
¢ = 0.955¢® results. The (frequency-independent) ratio of the displacement
amplitudes on the free surface w,/u, (Eq. 6.15) is a function of v* only R =
0 — w, =il.272u,, V& =0.33 — w, =il.565u,, v® = 0.5 — w, = i1.83%,).
The retrograde particle motion (as a function of time) at the top of the half-
space of the R-wave is illustrated together with that of the P- and SV-waves
for different angles of incidence in Fig. 6-6. For a damped half-space with
{R = (%, the phase velocity ¢ becomes complex. The (real) ratio c/c¥® is the
same as c/c® for the undamped case discussed above (Eq. 6.16). By introducing
uniform damping, the phase velocity c is affected in the same manner as for an
inclined body wave. The apparent velocity c, and the decay factor 4, follow from
Egs. 6.6 and 6.7. The amplitude ratio w,/u, also remains unchanged (Eq. 6.15).
For {® s {%, solving Eq. 6.16 leads to different results than for the undamped
case. The motion is no longer 90° out of phase. The values ¢ and w,/u, are still
frequency independent. For instance, for {5 = 0, {¥ = 0.20, and for c?/c¥ =2
(corresponding to v® = 0.33 for the undamped case), the ratio c¢/c*® hardly
changes, but |w,|/|u;| = 2.08 (compared to 1.565 for the undamped case) with
a phase angle = 76.4°. The imaginary parts of r and s are negative, leading to a
motion which (eventually) decays with depth.

6.3.5 Displacements and Stresses versus Depth

Finally, the variation of the displacements and stresses with depth is
studied. For specified displacement amplitudes u, and w, (related by Eq. 6.15),
Eq. 5.130 is formulated for z = 0. This allows By and Bgy to be expressed as a
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function of u, and w, (4dp = Asy = 0). The amplitudes of the displacements
u(z) and w(z) and of the stresses o,(z), 6,(z), and 7,,(z) then follow from Egs.
5.130 and Eqgs. 5.141 and 5.132, respectively. In Fig. 6-8, the horizontal and

0 1 0
0 ‘,>|u(z)| 0
futl
0.25 H 0.25
0.50 + 0.50 o
F4 r-4
o v KW
R-WRVE R-WAVE
—_——— l;ng= 9Qe - L;Jg = 90°
........ w;= B60° wR= 30°

Figure 6-8 Displacement amplitudes versus depth, half-space, vR= 0.33,
{® = 0.05.

vertical displacement amplitudes of the R-wave, scaled by the value at the free
surface, are plotted versus the nondimensionalized depth z/A with“the wave-
length A = ¢,2n/w. The subscript o is replaced by z. The horizontal amplitude
decays rapidly with depth near the surface. As it actually changes sign at about
z = 0.24, the motion below this depth is prograde. The vertical amplitude
increases somewhat with depth and then decays rapidly. For comparison, the
corresponding horizontal values for the vertically incident and the inclined SV-
wave with w¥, = 60° are also plotted on the left-hand side of Fig. 6-8. On the
right-hand side, analogously, the vertical displacements of the two P-waves
(vertical incidence and y® = 30°) are also shown. Large discrepancies between
the R-wave and the body waves arise. In particular, associating the horizontal
motion at the top with the vertically propagating SV-wave, the motion will from
a practical point of view be significantly larger at any depth than that arising
from the R-wave. In Fig. 6-9 the variation of the amplitude of the normal stress
o, and of the shear stress 1, is plotted. Dimensionless stress amplitudes &, and
1,. are defined as ,/[(c®)?p*] and 7.,/[(c¥)?p¥], respectively. The variation with
depth is shown for u, = 0.25A. The amplitude of the maximum shear stress Tp,x
(calculated from o, 0,, and 7,,) is also plotted. For comparison, the corre-
sponding results for a vertically incident and for an inclined SV-wave with
w&, = 60° are also indicated. The R-wave leads to a significant 7, close to the
free surface.
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Figure 6-9 Stress amplitudes versus depth, half-space, vR = 0.33, {® = 0.05.

6.4 SINGLE LAYER ON HALF-SPACE

By way of illustration the site consisting of a single homogeneous layer resting
on a half-space is analyzed. This case forms the basis for the parametric study
conducted in Sections 6.5 and 6.6. Thus no examples are presented in this
section, with the exception of the dispersion of the surface waves of the layer
resting on a rigid half-space. Especially for the out-of-plane case the derivation
is so simple that it can be followed easily in all details. The equations allow
generally applicable conclusions to be stated.

6.4.1 SH-Waves

Turning first to the out-of-plane motion, the nomenclature of the single
soil layer of depth d (superscript L) resting on an infinite bedrock (superscript R)
is illustrated in Fig. 6-10. With

m? = cos Y 6.17)
the phase velocity ¢ of the site follows (Eq. 5.93):
c*R
¢ = r;tﬁ (6.18)

The wave number k is specified in Eq. 5.94. The value c is constant for the site.
Formulating Eq. 6.18 for the layer leads to
. c*L XL

mt = p =c,}Rm§ (6.19)
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Figure 6-10 Single layer on half-space with nomenclature for out-of-plane
motion (after Ref. [5]).

From Eq. 5.95b,

~ = —i«/ ] — le (6.20a)
= —i1 - (m%)z (6.20b)

whereby 1 = tan y&,.

Assembling the dynamic-stiffness matrices of the layer [SLy] (Eq. 5.103)
and of the half-space S&; (Eq. 5.104), the dynamic-equilibrium equations of the
site become (Eq. 6.2)

ktLG*L ,:COS kttd E —1 :Hvt} . { 0 } 6 21)
sin kt*d| _1 i cos kt*d + ip sin kt*d ||v, O .

where the impedance ratio is defined as

ReI%R
p=5o (6.22a)
which can also be written as
Y % 3V *R
_ /1 — (m)? /G*RpF (6.22b)

P Ty T
From the first row of Eq. 6.21, the ratio of v, and v, follows:

% = cos kttd (6.23)

t

For a given k, v,/v, depends only on the properties of the layer.
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For no damping, this ratio is zero for kt*d = 2j — D=/2,j=1,2,...,
that is, for

_2j—1_ ¢
Q)= F— g vE (6.24)
For vertically incident waves (w4 = 90°), these are the natural frequencies
of the layer fixed at its base (expressed in radians).
For a small damping value {%, |v,|/|v, | evaluated at w, equals (for inclined
body waves)
(..o
|’Ub| max (2.] - l)nCL
The subscript “max” has been added to indicate that these amplifications are
(approximately) the maximum. To derive this equation, ck /1 + 2(*iis expanded
into the first two terms of a Taylor series. These amplifications decrease with
increasing frequency w, (j augmenting).
For body waves, the ratio of », and the outcropping motion v, (Fig. 6-10)
is calculated from Eq. 6.21, using Eqgs. 6.3 and 5.104 to determine

0, = ikt*G**v, (6.26)

(6.25)

as

By 1 (6.272)

Yo cos kttd + -;7 sin kttd

Analogously,

Yy 1

v, 1+ (i/p)tan kt*d
For no damping, the ratio |v,|/|v,| of the absolute values of the displacement
amplitudes equals

(6.27b)

v 1

v T2 frtl

[0, x/cosz ktLd+smpl:td
The denominator will never become zero for a finite p (elastic rock). This means
that resonance does not occur, even if there is no damping in the soil. The ampli-
tude |v,|/|v,| is always smaller than or equal to |v,|/|v,| (inverse of Eq. 6.23).
This is due to the reflected waves B, which radiate energy downward through
the rock toward infinity (radiation damping). In the definitions of |v,|/|v,| and
|v,]/|v,| (but not |v,|/|v,]) this effect is captured. The stationary values of Eq.
6.28 are obtained at

I

(6.28)

sin 2kt*d = 0 (6.29)
leading to the same ; as in Eq. 6.24 for the maxima of Eq. 6.28. These corre-
sponding maxima are equal to

(lL‘)m —p (6.30)

19,1
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For a small damping value {%, |v,|/|v,| evaluated at w, equals

(-1t
Ivol max + (2.] l)nCL (6'31)

The radiation damping is represented by p in this equation. With increasing
frequency (j augmenting), the effects of the radiation and material dampings
will decrease and increase, respectively. The minima of |, |/|, | for no damping
also occur at w, (Eq. 6.24). This ratio is always smaller than 1 (for elastic rock).

6.4.2 Love Waves

Setting the determinant of the coefficient matrix of Eq. 6.21 to zero leads
to the so-called frequency equation of the surface waves,

tan kttd = ip (6.32)

The surface waves of the out-of-plane motion are called Love waves. Omitting
damping and restricting the investigation to real values of k (and ¢), the following
properties of Love waves are established. As ¢ < ¢}, m® > 1(Eq. 6.18). To detet-
mine the frequencies at which the different modes start, ¢ is set equal to c?.
This leads to m§ = 1, 1* = 0 (Eq. 6.20a), p = 0 (Eq. 6.22a), and from Eq. 6.32

kttd = (j— D=, i=12... (6.33)
Using Eqs. 5.94, 6.20b, and 6.19, Eq. 6.33 is transformed to
wd _ _(j—D=m
CANIC:
()
The motion associated with the & where a new mode starts corresponds to an
inclined SH-wave with y&; = 0.

Examining the asymptotic behavior of the dispersion curves for w — oo,
the frequency equation 6.32 can easily be rewritten as

(c ) ck ’GR 6
«/ d=-* o arctan -p = prres (6.35)
For @ — oo, ¢ — ¢} for all modes. This is to be expected, as for large w the
motion is restricted to the layer.

It is interesting to note that for a specific ¢, the frequency difference Aw
between two consecutive modes equals

(6.34)

L T
Ao — ST _
I @re (639
Using this equation, the dispersion curves of all higher modes can directly be
calculated starting with that of the first.
It is worth stating that the ratio of v, and v, depends on ¢ (and not directly
on w). For a specific ¢, all modes will lead to the same result. This can easily
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be seen by substituting Eq. 6.32 in Eq. 6.23:

<
—

/. —
TR g (6.37)

For the special case of a homogeneous layer resting on a rigid half-space, the
frequency equation 6.32 is reduced to

kttd = n (6.38)

2j — 1
2

To study the dependence of the phase velocity ¢ on the frequency w (dispersion),
for this case the real and imaginary parts of the dimensionless phase velocity
¢/ck of the first mode are plotted versus the dimensionless frequency @ = wd/ck
in Fig. 6-11a. For no damping in the layer, a cutoff frequency coinciding with the
fundamental frequency of the layer exists, corresponding to & = =/2. For
@ > w2, c(w) is real and thus the mode propagates horizontally without an
attenuation. The decay factor 8, = 1 (Eq. 6.7a). For @ < x/2, c(®) is imaginary;
thus the motion decays exponentially and does not propagate (Eq. 6.5). The
corresponding rate of horizontal energy transmission is zero (Eq. 5.123), as k
is imaginary. When studying the seismic-site response, this range of the Love
waves is of no interest. Introducing damping, c(w) is complex for all w, leading
to a motion that propagates and attenuates horizontally. No cutoff frequency
exists. However, the motion attenuates significantly for @ < =/2. While the

Re (%:) o] b

A

VI"‘ (%:)

Figure 6-11 First Love mode, homogeneous layer on rigid half-space (Ref. [5]).
(a) Dimensionless phase velocity versus dimensionless frequency; (b) frequency
spectrum.
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decay factor per wavelength J, for large w equals 0.73 (Eq. 6.7a), it is only
0.001 for @ = =/2. It should be remembered that a small decay factor represents
large attenuation. Near the fundamental frequency of the layer and below,
the motion for free-field-response analysis is of academic interest only. In Fig.
6-11b, the same information is presented as a familiar frequency spectrum. For
no damping ¢ = oo at @ = n/2 (Fig. 6-11a), resulting in k¥ = 0 in Fig. 6-11b.
Turning to higher modes, the cutoff frequency of the jth mode for no damping
coincides with the jth natural frequency of the layer. The properties of the jth
mode correspond to those of the first.

6.4.3 Physical Interpretation of Variables

It has been seen that there are some variables that can be real, imaginary,
or complex. This is systematically investigated and the physical interpretation
of the variables is discussed. The first case shown in Table 6-1 consists of a body
wave propagating in an undamped site. The angle of incidence in the half-space
w&u is selected between 0 and 90° and is thus real, resulting in a real direction
cosine m% < 1. The phase velocity ¢ and the wave number k are also real. The
wave thus travels horizontally with an apparent velocity ¢, == ¢ without any
attenuation. The variables w%; and mZ <{ 1 are again real. The products kz®
and kz*, which describe the variation with depth, are both real. The variation
with depth is thus harmonic. The sites discussed in Table 6-1 assume that the
half-space is stiffer than the layer. For the case of a layer stiffer than the rock and
of a wave having a shallow angle of incidence w%;, ¢ < ¢ can arise (not shown
in Table 6-1). In this case m% > 1, and y%; and ¢* are imaginary. As kt* is imagi-
nary, the amplitude »(z) will no longer be harmonic in the layer (Eq. 5.98),
but will vary exponentially with depth.

In the second case, only the layer is damped. The phase velocity ¢ remains
real; the motion thus does not attenuate horizontally. The variable mZ is com-
plex (Eq. 6.19), resulting also in complex yw%; and ¢~ To interpret a complex
angle of incidence, only the incident wave in Eq. 5.96 is examined. Substituting
t* = Re (¢t*) + i Im (¢*) in Eq. 5.96 leads to

v4(z, x) == AL exp [—k Im (¢£)z] exp [ik Re (¢X)z] exp (—ikx)  (6.39)

The second and third exponential functions are interpreted as a harmonic wave
propagating with a real angle of incidence determined by the arctan Re (¢%).
As Im (¢) turns out to to be <0, the first exponential function expresses that
the motion increases exponentially with z. As the motion will decay in the
direction of propagation because of the damping, the “amplitude” along the
wave front will vary, as shown in Fig. 6-12, resulting in no decay in the hori-
zontal direction. In this figure the “amplitude” in two distinct locations of the
wave front is presented.

In case 3 of Table 6-1, damping also arises in the half-space. The phase
velocity ¢ is complex, leading to an attenuation of the motion in the horizontal
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Figure 6-12 Wave pattern for complex angle of incidence (Ref. [5]).

direction. The decay factor for body waves thus depends on the damping of the
half-space. For the special case of uniform damping ({* = {*), not shown in
Table 6-1, w&y and mZ are real.

Case 4 deals with Love waves in the undamped site. As ¢ < ¢®, mL < 1
< mZ results, leading to an imaginary y§; and a real yiy. As kt* is real, a har-
monic motion with depth takes place in the layer. In the half-space the motion
decays exponentially with depth.

In case 5, the site is damped. All variables are complex. The motion
attenuates horizontally, and the decay factor for Love waves depends on {*
and {® Again, the motion decays exponentially with depth in the half-space.

6.4.4 P- and SV-Waves

The in-plane motion is analyzed next. The nomenclature is illustrated in
Fig. 6-13. For an incident SV-wave with a specified y§y,

my = cos yiy (6.40)

J
N

| (solL) LAYER

( BED )} ROCK

Adv

Figure 6-13 Single layer on half-space with nomenclature for in-plane motion
(after Ref. [6]).
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The phase velocity ¢ of the site follows from Eq. 5.126:
C*R

m;

For {® = 0, ¢ becomes complex and the motion thus attenuates in the horizontal
direction. The wave number k is specified in Eq. 5.127.

Formulating Eq. 5.126 for the layer and for the half-space determines
w5, wky, and w? (angle of incidence of the reflected P-wave).

C =

(6.41)

et _ gt
I om I
For w& > w® and {* = {®, %, yk, and 3§ are all real. For y§ <&, v
is imaginary, resulting in an associated motion which decays exponentially with
depth. For {* # {®, w% and yky are complex. The physical interpretation of a
complex y* is discussed in depth in connection with Fig. 6-12. The variables
s®, st and R, - are specified in Eq. 5.128. All terms appearing in the dynamic-
stiffness matrices of the layer [Si.sv] (Eq. 5.134) and of the half-space [SF.sv]
(Eq. 5.135) are thus determined. For an incident P-wave, analogous formulas
apply.

Assembling the dynamic-stiffness matrices [SE sy] and [SE.sv] leads to the
dynamic equations of motion of the site:

(6.42)

u, 0
iw 0
[Sr-sv] = (6-43)
u, P,
iw, iR,

where [§'p.sv] denotes the assembled dynamic-stiffness matrix and P, and R, are
the component amplitudes of the load vector at the base. The latter are present
only if the control point is selected at the outcropping rock. As explained in

connection with Eq. 6.3,
P, u,
b = [S{s-svl{. } (6.44)
iR, iw,

where [S2v] is defined in Eq. 5.135 and u, and w, denote the prescribed out-
cropping motion. The motion throughout the site, including the amplifications,
is determined by solving Eq. 6.43.

6.4.5 Rayleigh Waves

For Rayleigh waves (R-waves), the load vector is zero. Setting the determi-
nant of [Sp.sv] in Eq. 6.43 equal to zero leads to the frequency equation. This
determines the phase velocities ¢ as a function of @ for the different modes. For
an undamped site, and restricting the discussion to real values of ¢, the following
properties of R-waves are established. The first R-mode starts at @ = 0 with
¢ = R-wave velocity of the bedrock (half-space) and converges for @ — oo to
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that of the layer. The higher modes exhibit cutoff frequencies with ¢ = ¢® and
converge, in general, for @ — oo to ¢ = c%. It follows from Eq. 6.42 that %
(and w§,) are imaginary. The corresponding motion thus decays exponentially
with depth. The angles y§ and w4y can be real or imaginary, depending on c.
For an undamped layer on rigid bedrock, the R-modes all start at the natural
frequencies of the layer in the horizontal and vertical directions. Thus below the
fundamental horizontal frequency, no R-waves exist. This is analogous to the
Love wave. For a damped site, c(w) is complex. The motion decays horizontally
and the decay factor depends on {* and {®. All angles of incidence are complex.
Again, the motion decays exponentially with depth in the bedrock.

6.5 PARAMETRIC STUDY OF OUT-OF-PLANE MOTION
6.5.1 Scope of Investigation

To be able to identify the key parameters governing the free-field response,
vast parametric studies are performed. This allows the effects to be evaluated
and the conditions to be established for which a specific aspect can dominate.
The computational experience presented in this and the next sections should
contribute to the engineering judgment of the analyst, which is required if the
analyst is to select reasonable parameters to capture the motion of the site even
before the structure is built. The results of the free-field analysis should be able
to be anticipated to a certain degree, even allowing the calculation to be avoided
in some cases. The important aspect of the link to the seismic loading applied
to the structure is also addressed.

A site consisting of a single soil layer resting on a half-space representing
the bedrock is examined extensively (Fig. 6-10). For a homogeneous layer, the
dynamic system is characterized by the following dimensionless parameters:

Ratio of shear-wave velocities: ¢, = c®/ct
Ratio of mass densities: p = p&p*
Damping ratios: NG

It should be noted that Poisson’s ratios do not explicitly arise in the equations
for the out-of-plane motion. To describe the response for harmonic motion, the
following variables are defined:

Dimensionless frequency: @ = wd|ct
Dimensionless apparent velocity: ¢, = c,/ct

In addition to this rather theoretical case of a homogeneous layer, a site con-
sisting of a soil layer having a shear-wave velocity that increases linearly with
depth and having a total depth d resting on a homogeneous infinite bedrock
is examined. This site is denoted later as “increasing stiffness.” The shear velocity
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of the half-space ¢ is equal to the shear-wave velocity of the layer at its base.
Only the results obtained when the ratio of the shear-wave velocity of the layer
at its base to that at its top is equal to 5 are discussed. To be able to calculate @
and ¢,, an average c* for this site with increasing stiffness is calculated, which is
defined as follows:
ot = — (6.45)
| dzle2) '

The propagation time of the SH-wave for the (fictitious) homogeneous layer is
set equal to that of the layer with increasing stiffness. For our case, this results
in ¢, = 2.012. The mass density p is assumed to be constant over the whole site.
In addition to {® = {* = 0.05, the damping ratio of the layer is selected to
decrease linearly with depth, varying from 0.05 at the top to 0.0 at the base
((® = 0). The layer with increasing stiffness is discretized with six layers of
constant material properties.

The homogeneous half-space and the single layer built in at its base repre-
sent the two limiting cases. They are contained in the general formulation as
special cases (¢, = p = 1 and ¢, = o).

6.5.2 Vertically Incident SH-Waves

The ratio of the absolute values of the displacement amplitudes at the top
of the homogeneous layer and at outcropping of the bedrock |»,|/|v,| is plotted
in Fig. 6-14a versus the dimensionless frequency @ for vertically incident
SH-waves. The parameters are specified in the figure and in its caption. The
peaks occur at the @& corresponding to the frequencies of the layer fixed at its
base (Eq. 6.24 with yk; = 90°). The increased radiation damping occurring
by means of the half-space for decreasing ¢, reduces the peaks. The peak values
are specified in Eq. 6.31, whereby for vertically incident waves, p = ¢, (Eq.
6.22b). The effect of the radiation damping decreases with increasing . In Fig.
6-14b, the same ratio is plotted for the site with increasing stiffness. The peaks
no longer occur at the natural frequencies of the layer fixed at its base. The
fundamental frequency corresponds to an @ = 2.07. For comparison, the curves
for the homogeneous layer for ¢, = 2 and 5, taken from Fig. 6-14a, are also
shown. The amplification for the site with increasing stiffness tends to be more
uniform over the frequency range. Even for this most simple wave pattern the
more realistic site with increasing stiffness shows a different behavior from that
of the homogeneous layer with suitably selected parameters.

The ratio | v, |/|v,| is plotted as a function of @ in Fig. 6-15. As discussed in
Section 6.2.2, the results are independent of the properties of the rock. The curve
for the homogeneous layer is equal to the inverse values of |v,|/|v,|for ¢, = oo
shown in Fig. 6-14a. The minima arise at the natural frequencies of the layer
fixed at its base for both sites. The minima for the homogeneous layer are
specified as the inverse of Eq. 6.25. For this case, the peaks of |v,|/|v,| are > 1,
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Figure 6-14 Amplification outcropping, vertical incidence, j = 1, {® = {L =
0.05 (Ref. [5]). (a) Homogeneous layer; (b) increasing stiffness.

AMPLIFICATION

Figure 6-15 Amplification within, vertical incidence, {L = 0.05.

IvplZlvel

1.5

™~
o
J

0.0

INCRERSING STIFFNESS

———- HOMOGENEOUS LAYER
N\
~ //\ /N

2 4 & 8 10 12
DIMENSIONLESS FREQUENCY wd/cg



Sec. 6.5 Parametric Study of Out-of-Plane Motion 207

this tendency being more pronounced in the higher-frequency range. For a site
with hysteretic damping, the ratio |v,|/|v,| will increase without bound for
increasing @. This means that the larger the depth d is, the more the amplitudes
of the high frequencies increase. Figure 6-15 demonstrates how much the fre-
quency content of the motions at a specific depth is influenced by the reflections
of the waves at the free surface. Obviously, as discussed in Section 6.1.2, the
control point with a control motion containing all frequencies in the range of
interest could not be selected at the base within the site (at point 5).

6.5.3 Inclined SH-Waves

Amplification within. In contrast to vertically incident waves, in-
clined body waves propagate horizontally across the site with an apparent veloc-
ity ¢, (Eq. 6.6) and attenuate with a decay factor J, (Eq. 6.7a). The (complex)
phase velocity ¢ in these two formulas equals c¥*/cos y§y. For {* = 0 and for
any value of {Z, ¢ is real and the motion does not attenuate horizontally. Varying

‘the angle of incidence in the layer y&;, the amplification within the layer | v, |/| v,
is shown in Fig. 6-16. The amplification | v, |/| v,| depends only on the properties
of the layer and on y&;. Compared to the case for vertical incidence, the fre-
quencies at which the minima occur are shifted by the factor 1/sin w5y (Eq.
6.24). The minima themselves are independent of w&y (Eq. 6.25). The range of
physically admissible & is limited, as y&; > 0, resulting in arccos (1/¢,) <
wh < 90° (Egs. 6.17 and 6.19). In practical cases, the direction of propagation
of the wave in the layer will be quite steep. This results in the frequency shifts
being negligible (with the exception of a site approaching an elastic half-space).

1.5

tvpl Zlvel

AMPLIFICATION

T T & & o 4
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Figure 6-16 Amplification within, homogeneous layer, {£ = 0.05 (Ref. [5]).

Amplification outcropping. In contrast, the amplifications defined
with respect to the outcropping rock are strongly influenced by w8y, although
the direction of the wave propagation in the layer will also in this case be quite
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Figure 6-17 Amoplification outcropping, homogeneous layer, ¢, =2, j =1,
{R = {L = 0.05 (Ref. [5]). (a) To top; (b) to base.

steep. The ratios to the top |v,|/|v,| and to the base |v,|/|v,| are shown for the
homogeneous layer in Figs. 6-17 and 6-18 for ¢, = 2 and é, = 5, respectively.
The frequencies at which the maxima of |v,|/|v,| and the minima of |v,|/|v,|
occur are again shifted by the same factor, compared to the case of vertical
incidence (Eq. 6.24). The maxima of |v,|/|v,| are specified in Eq. 6.31. The
maxima of |v,}/|v,| and the minima of | v, |/| v, | are decreased strongly for decreas-
ing w&. The corresponding ratios for the outcropping motion are plotted in
Fig. 6-19 for the site with increasing stiffness. The same general tendencies as
for the site with a homogeneous layer are visible. As |v,|/|v,| shows good
agreement with the corresponding amplification for the homogeneous layer
with ¢, = 2 (Fig. 6-17b), selecting average soil properties seems to be adequate
for the motions at the base, but not at the top of the layer (Fig. 6-19a versus
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Figure 6-18 Amplification outcropping, homogeneous layer, é; =35, g =1,
{R = {L = 0.05 (Ref. [5]). (a) To top; (b) to base.

Fig. 6-17a). The variation of the displacement amplitude with depth is studied
for inclined body waves in the next subsection.

6.5.4 Love Waves

The surface waves of the homogeneous layer with and without damping
resting on a rigid half-space are discussed in Section 6.4.2. The dispersion is
illustrated in Fig. 6-11.

Dispersion and attenuation. For a flexible half-space, the dispersion
curves of the first three modes are shown in Fig. 6-20 for the indicated param-
eters. Without damping, the phase velocity ¢ is real and is thus equal to the
apparent velocity c,. No attenuation takes place. The dispersion curves start
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Figure 6-19 Amplification outcropping, increasing stiffness, {R = {L = 0.05

(Ref. [5]). (a) To top; (b) to base.
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at the o specified in Eq. 6.34 with the value ¢, = ¢, and all converge to ¢, = ¢
for @ — oo. In contrast to the layer resting on a rigid half-space, the dispersion’
curves do not start at the frequencies of the layer fixed at its base (@ = n/2,
37/2, 57/2). In particular, the first mode starts at @ = 0 (with ¢, = ¢®). This,
however, does not mean that significant radiation damping (effective in the
horizontal direction) takes place in the frequency range below the fundamental
frequency of the layer, as most of the rate of (horizontal) energy transmission
for the first mode for frequencies below & = m/2 is present in the half-space.
Equation 5.123 for the rate of energy transmission N is evaluated at a specific
frequency for the layer and for the half-space. The two rates of energies are then
scaled to achieve the sum of 1 (N® + N% = 1). This is indicated with a bar. The
values are specified at three frequencies in Table 6-2. Above @ = x/2, the oppo-
site applies, as most of the horizontal energy transmission occurs in the layer.
This will also strongly affect the dynamic-stiffness matrix of the soil (Sections
7.3 and 7.4). For the higher modes, the same property applies, as can be seen
for the second mode in Table 6-2.

TABLE 6-2 Scaled Rate of Horizontal Energy Transmission,
5.1:29'_):1!CR=CL=0

First Mode Second Mode
Dimensionless
Frequency, Layer, Half-space, Layer, Half-space,
od|ct NL NR NL NR
n/4 0.08 0.92
3n/2 0.99 0.01 0.37 0.63
57/2 1.00 0.00 0.97 0.03

Introducing damping results in a complex ¢. The apparent velocity ¢,
hardly changes (Fig. 6-20), but attenuation of the motion in the horizontal
direction arises. The direction of energy propagation is no longer horizontal.
For instance, for a damped layer on an undamped half-space, energy propagates
vertically from the half-space to the layer. This energy transmission in the vertical
direction can be verifed as follows. Using Eq. 5.120, Eq. 5.104 with @, = —7,
= —1,,; results in

ktRG*R

P (6.46)

o

For an undamped system, ¢ for a Love wave is imaginary (Eq. 6.20a, with
m® > 1), resulting in 7, and 9, being 90° out of phase. The scalar product of
these two vectors which defines the rate of energy transmission in the vertical
direction (analogously to Eq. 5.122) is thus zero. For a damped system (even with
an undamped half-space), however, 7, and 9, will no longer be perpendicular,
leading to propagation of energy.
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The decay factor per wavelength J, (Eq. 6.7a) depends on the ratio of
Im (c) and Re (c). For an inclined SH-wave propagating in a medium with a
damping ratio {, the phase velocity ¢ = ¢*/m,. The decay factor per wavelength
in the direction of propagation J, equals exp [—2z Im (c*)/Re (c¥)), where
Im (c*)/Re (c¥) = { (for small {). Thus the ratio Im (c)/Re (¢) can be inter-
preted for Love waves as the effective damping ratio. It is plotted for the first
two modes versus @ in Fig. 6-21a. For the case of the damped layer and the
undamped half-space (solid line), the motion is attenuated, in contrast to body
waves. The effective damping ratio starts increasing from zero for both modes.
This is to be expected, as the influence of the (undamped) half-space dominates.
The effective damping ratio also converges for high frequencies to (%, as the
motion is restricted to the layer. However, in between, the values are larger than
{*, this trend being more pronounced for the second mode. It is interesting to
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Figure 6-21 Attenuation, homogeneous layer, ¢; = 2, § = 1 (Ref. [5]). (a) Effec-
tive damping ratio; (b) decay factor per length 4.
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note that the peak of the effective damping occurs at a frequency where the
inclination of the dispersion curve (Fig. 6-20) is large. For the case of uniform
damping (dashed line), the curves start at {*. The other properties are the same.
For the hypothetical case of a damped half-space and an undamped layer (dotted
line), the limiting values are as expected. In Fig. 6-21b, the decay factor per
length d (Eq. 6.7b) is plotted for the first three modes. This displayed informa-
tion follows from that shown in Figs. 6-20 and 6-21a. For comparison, the line
corresponding to an SH-wave with y§; = 0 ({* = 0.05) is also shown as a
dashed-dotted line. From Fig. 6-21 it is also visible that the higher modes in
the frequency range where they “start” decay less than the first mode.

The shape of the dispersion curves for the different sites is discussed next.
In Fig. 6-22, the abscissa represents, as usual, @. To be able to represent the
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Figure 6-22 Dispersion, § = 1, {R = {L = 0 (Ref. [5]).

various cases in the same figure, c? and the shear-wave velocity of the layer at
the top, ¢! (the two values between which the curves lie), are specified as the
ordinate. For the two cases of the homogeneous layer, ¢! = c£. As expected,
the curves for é, = 5 start at a smaller @ and show a steep descent in the vicinity
of the natural frequencies of the layer fixed at its base. The dispersion curve for
increasing stiffness converges to ¢! more slowly. Including damping would
hardly affect the dispersion curves shown in Fig. 6-22. The decay factor per
horizontal distance d is shown for the homogeneous layer with ¢, = 5 in Fig.
6-23a. For comparison, the line corresponding to an SH-wave with yfy = 0
((R = 0.05) is also shown as a dashed-dotted line. The peaks of the effective
damping visible in Fig. 6-21a for ¢, = 2 are less pronounced than those corre-
sponding to &, = 5, resulting in the dips shown in Fig. 6-23a. In Fig. 6-23b, the
decay factor is shown for the first three modes of the site with increasing stiff-
ness. The damping of the layer diminishes from 0.05 at the top linearly with
depth to 0.0 at the base. The half-space is not damped. The higher modes
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Figure 6-23 Attenuation, 7 = 1 (Ref. [5]). (a) Homogeneous layer, ¢; = 5;
(b) increasing stiffness, {8 = 0, {L = 0 — 0.05.

attenuate less, as for a specific frequency, the corresponding motion extends
farther down into the region which is less damped.

Displacements and stresses versus depth. To study the motion’s
variation in the vertical direction, the amplification within the site |v,|/|v,| and
the amplitude ratio |v(2)|/|v,| for selected @ are plotted for the homogeneous
layer with ¢, = 2 in Fig. 6-24a and b, respectively. For increasing @, the motion
of a specific mode is more concentrated in the layer. In addition to the values of
the Love wave, the results for the body waves with vertical incidence and with
v& = 10° (wy = 60.5°) are shown. The shifts in the frequencies where the
minima for the inclined SH-waves occur, compared to those for vertical incidence
(Eq. 6.24), are apparent in Fig. 6-24a. For the frequency where a mode “starts,”
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Figure 6-24 Variation with depth, homogeneous layer, &; = 2, § =1, (R = (L
= 0.05 (Ref. [5]). () Amplification within; (b) amplitude versus depth.

and somewhat above, the motion of this same mode is very similar to that of the
inclined SH-wave (Fig. 6-24). In these frequency ranges, the attenuation is
small (Fig. 6-21b). For the remaining ranges of frequency, the discrepancies are
large; however, as the Love wave decays strongly, this is of minor practical
importance. For instance, in Fig. 6-24b for @ = 3n/2, the variation with depth
of the inclined SH-wave agrees well with that of the second Love mode, but not
with that of the first. It is visible from the amplification |v,|/|v,| for the case
¢, = 5 (Fig. 6-25) that the two curves of the body waves coincide from a practical
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Figure 6-25 Amplification within, homogeneous layer, ¢, = 5, § = 1, {R = {L

= 0.05.

point of view. In addition, there is excellent agreement of |v,|/|v,] of the Love
mode in the frequency range varying from the frequency where the mode starts
up to the next higher natural frequency of the layer with v, |/| »,| of the vertically

incident SH-wave.

The corresponding comparisons for the site with increasing stiffness are
plotted in Fig. 6-26. Up to the fundamental frequency of the layer fixed at its
base (@ = 2.07), the three curves agree well. For higher frequencies, the varia-
tion with depth is different for the body waves. Where a Love mode starts and
just above, the agreement between this mode and the inclined SH-wave is again

good.
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Figure 6-26 Variation with depth, increasing stiffness, {® = 0, (£ = 0 — 0.05
(Ref. [5]). (a) Amplification within;
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Figure 6-26 (Continued) (b) amplitude versus depth.

The corresponding variation of the shear-stress amplitudes with depth is
shown in Fig. 6-27. Dimensionless shear-stress amplitudes 7 are defined as
7/[(c)?p*). The results are presented for |v,|/d = 1. The shear-stress amplitude
7,, (Eq. 5.100) is smaller for the Love wave and for the inclined body wave than
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Figure 6-27 Shear-stress amplitudes versus depth, increasing stiffness, {® = 0,
{L =0 — 0.05, wdjct = n/2 (Ref. [5)]).
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for the vertically incident wave. Horizontally propagating waves also lead
to a shear-stress amplitude 7, (Eq. 5.112b) which is not zero at the free surface.
The amplitude of the maximum shear stress 7., calculated from 7,, and 7,, is
also plotted in Fig. 6-27. It is remarkable that all three waves result in a very
similar 7,,, value. This value is in addition only slightly larger than 7, for
the Love wave and for the inclined body wave as t,, and t,, are nearly
perpendicular.

Scattered motion. Finally, the link of the horizontally propagating
free-field motion to the loading applied to a surface structure with a rigid
circular basemat of radius a is examined. As discussed in Section 6.2.5, the ratio
walc, determines the translational and torsional components of the scattered
motion resulting from the out-of-plane motion. These are shown in Figs. 7-30
and 7-31. Based on c () presented for the site with increasing stiffness in Fig.
6-22, the curves for the first and second Love modes are constructed. They are
presented for a = 0.5d in Fig. 6-28. The corresponding decay factors calculated
for a horizontal distance 10a (= 5d) are also indicated. For comparison, the
straight line corresponding to an SH-wave with w&; = 0 is also shown. The
latter does not decay ({® = 0). For a specific w, wa/c, (which characterizes the
wave effects) is larger for Love waves than for the body wave. The attenuation
is significant but not overwhelming. Considerable wave effects on the seismic
input can potentially arise. The influence on the structural response is discussed
in depth in Section 9.2.2. The corresponding curves wa/c, versus @ for the site
with a homogeneous layer for ¢, = 2 and = 5 can be drawn using the informa-
tion shown in Figs. 6-22, 6-21b, and 6-23a.
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Figure 6-28 Applied seismic-input motion, increasing stiffness, {R = 0, {L =
0 — 0.05 (Ref. [5]).
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6.6 PARAMETRIC STUDY OF IN-PLANE MOTION
6.6.1 Scope of Investigation

A site consisting of a single soil layer with depth d resting on a half-space
representing the bedrock is analyzed extensively (Fig. 6-13). In Section 6.5 the
same dynamic system is examined parametrically for the out-of-plane motion.
To be able to demonstrate agreement, and especially differences in the dynamic
behavior, a certain duplication cannot be avoided. At the same time this section
becomes self-contained. As expected, it is more difficult to establish the key
features of the in-plane motion, as the latter consists of two components. Besides
their absolute values the phase angle between them is important. For a homo-
geneous layer, the site is characterized for the in-plane motion by the following
dimensionless parameters:

Ratio of shear-wave velocities: é, = c¥/ck
Ratio of mass densities: p = p&/p*
Poisson’s ratios: T o
Damping ratios: R, Cr

(Different damping ratios for P- and S-waves are indicated by subscripts pands.)
To describe the response for harmonic motion, the following variables are
defined:
Dimensionless frequency: @ = wd/ct

Dimensionless apparent velocity: ¢, = c¢,/ck

Reference is also made to the limiting cases, the half-space (¢, = § = 1) and
the single layer on a rigid half-space (¢, = oo).

In addition to the homogeneous layer on a half-space, a site consisting of
a soil layer having a shear-wave velocity that increases linearly with depth and
having a total depth d resting on a homogeneous half-space representing the
bedrock is investigated. This generally more realistic site is denoted later as
“increasing stiffness.” The shear-wave velocity of the half-space c¥ is equal to
the shear-wave velocity of the layer at its base. Only the results obtained when
the ratio of the shear-wave velocity of the layer at its base to that at.its top is
equal to 5 are discussed. To be able to calculate @ and é,, an average c% for this
site with increasing stiffness is calculated.

g (6.47)
[ dzfe2)

For our case, this results in ¢, = 2.012. The mass density p and Poisson’s ratio
v are assumed to be constant over the whole site. In addition to (R = {* =
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0.05, the damping ratio of the layer is selected to decrease linearly with depth,
varying from 0.05 at the top to 0.0 at the base ({* = 0). The layer with increasing
stiffness is discretized with six layers of constant material properties.

6.6.2 Vertically Incident SV- and P-Waves

For vertical incidence, the amplification for SV-waves is obviously identical
to that for SH-waves as discussed in Section 6.5.2. For P-waves, this would also
apply if the P-wave velocity ¢, instead of ¢, were introduced in wd/ct and in
c%/ct. To be able to discuss combinations of P- and SV-waves, the dimensionless
parameters defined in Section 6.6.1 are not modified. As for the selected Poisson’s
ratio = 0.33, ¢, = 2c,, the curves for the P-waves are generated from those
of the SH-waves (Figs. 6-14 and 6-15) by multiplying the abscissa by 2. As an
example, the ratio of the absolute values of the vertical-displacement amplitudes
at the top of the homogeneous layer and at outcropping of the bedrock |w,|/| w, |
is plotted in Fig. 6-29 versus the dimensionless frequency @ for vertically incident
P-waves. The parameters are specified in the figure and in its caption. The peaks
occur at the @ corresponding to the natural frequencies of the layer fixed at
its base (, 3x, . ..). The increased radiation damping occurring by means of
the half-space for decreasing ¢, reduces the peaks. The effect of the radiation
damping decreases with increasing w.
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Figure 6-29 Amplification outcropping, P-wave, vertical incidence, p=1,
VR = yL = 0,33, {R = {L = 0.05.

For the site with increasing stiffness (not shown), the peaks of | w, |/|w, | no
longer occur at the natural frequencies of the layer fixed at its base. The ampli-
fication for the site with increasing stiffness tends to be more uniform over the
frequency range.

The ratio of the vertical motions within the site | w, |/| w, | is independent of
the properties of the rock. The curve for the homogeneous layer is equal to
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the inverse values of |w,|/|w, | for &, = oo shown in Fig. 6-29. The minima arise
at the natural frequencies of the layer fixed at its base. This also applies for the
layer with increasing stiffness (not shown).

6.6.3 Inclined P- and SV-Waves

In contrast to vertically incident waves, inclined body waves propagate
horizontally across the site with an apparent velocity c, (Eq. 6.6) and attenuate
with a decay factor &, (Eq. 6.7a). The (complex) phase velocity ¢ in these two
equations equals c}*/cos y§ for incident P-waves and c*®/cos & for incident
SV-waves.

Incident P-waves. At first, the site motion caused by an incident
P-wave in the bedrock (4R, == 0) is discussed. The corresponding outcropping
motion u,, w, (Fig. 6-4) is discussed in Section 6.3.2 (Fig. 6-5). In this case the
dynamic system consists of a half-space.

In contrast to the outcropping motion of the elastic half-space, the motion
(caused by an incident P-wave in the half-space, AR, = 0) at the top of the layer
resting on a half-space (Fig. 6-13) depends on the frequency of excitation. The
ratios | w, |/| 42| and |u,|/| 4%| and the phase angle of the ratio w,/u, are plotted
in Fig. 6-30 for the site with increasing stiffness. For the limiting case of zero
dimensionless frequency, the results of the half-space shown in Fig. 6-5 are
recovered. The elastic half-space results for d — 0, which also leads to @ — 0.
This arises for all . The peaks of | w,| and |u,| do not occur at the fundamental
frequencies of the layer fixed at its base in the vertical (@ = 4.14) and horizontal
directions (@ = 2.07), respectively. Reducing y§ leads to a diminution of |w,|
for the whole frequency range. For the frequency range of interest in earthquake
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Figure 6-30 Motion at top of layer, incident P-wave, increasing stiffness,
YR = yL = 0,33, (R = {L = 0.05 (Ref. [6]). (a) Vertical;
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Figure 6-30 (Continued) (b) horizontal; (c) phase angle.

engineering, |u,| bears comparison with |w,| for intermediate y®. The P-wave
will be steep at the top of the layer and will thus not contribute significantly to
u,. But the incident P-wave in the half-space also creates SV-waves in the layer,
which lead to the considerable horizontal motion. For the sake of clarity, the
zero value for vertical incidence is shown with a small offset. It is apparent from
Fig. 6-30c that the phase angle between the vertical and horizontal motions is
almost independent of wX The motion in the frequency range of interest
(@ < 2m)is prograde with respect to the direction of propagation (or close to it);
that is, the vertical motion lags behind the horizontal by 90° for the coordinate
system selected (clockwise). The amplification for the outcropping motion can
be calculated on the basis of the information in Figs. 6-5 and 6-30. As an exam-
ple, |w,|/|w,| is plotted in Fig. 6-31. With the exception of the very shallow angle
of incidence y§ = 10°, | w,|/| w,| hardly depends on w3. It is interesting to note
that | w,}/|w,| is larger for the inclined waves than for vertical incidence for the
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Figure 6-31 Vertical amplification outcropping, incident P-wave, increasing
stiffness, vR = vL = 0.33, {R = {L = 0.05 (Ref. [6]).

whole range of frequency. This is in marked contrast to the corresponding ampli-
fication for SH-waves (Figs. 6-17, 6-18 and 6-19). The corresponding motion at
the base of the layer |w,|/| 4%] and |4, |/| 4% is shown in Fig. 6-32. Dips of |w,|
occur at frequencies which, for vertical incidence, are equal to the vertical natural
frequencies of the layer fixed at its base. A decrease in y/z shifts these frequencies
to a somewhat higher value (Fig. 6-32a). The same applies to those frequencies
where the dips of | u,| arise relative to the natural frequencies in the horizontal
direction (Fig. 6-32b). The amplification for the vertical motion within the layer
| w, |/|w,| follows from the information shown in Figs. 6-30a and 6-32a. As is
visible in Fig. 6-33, this ratio is not very sensitive when yz is varied.

The tendencies established for the site with increasing stiffness (for an
incident P-wave in the half-space) in connection with Figs. 6-30 to 6-33 also
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Figure 6-32 Motion at base of layer, incident P-wave, increasing stiffness, v® =
vL = 0.33, {R = {L = 0.05 (Ref. [6]). (a) Vertical;
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Figure 6-32 (Continued) (b) horizontal.
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Figure 6-33 Vertical amplification within, incident P-wave, increasing stiffness,
VR = yL = 0.33, {R = {L = 0.05 (Ref. [6]).

hold for the site with the homogeneous layer, varying é,. As an example, the
ratio of the vertical-displacement amplitudes at the top of the layer caused by a
P-wave with yf = 30° |w}°| and with y§ = 90° |w?°| is shown in Fig. 6-34 for
¢, = 2 and = 5. By way of comparison, for the site with increasing stiffness, the
same ratio, which can be determined from Fig. 6-30a, is also plotted. Itis apparent
that the three curves are very similar. In addition, this ratio depends only weakly
on @.

Incident SV-waves. Turning to SV-waves, the outcropping motion
U, w, at the free surface of the bedrock resulting from an incident SV-wave
(Fig. 6-4) is examined in Section 6.3.3 (Fig. 6-7). It is independent of the fre-
quency of excitation.
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Figure 6-34 Vertical amplitude ratio at top, incident P-wave, § = 1, vR = vL
= 0.33, {R = {L = 0.05 (Ref. [6]).

The motion (caused by an incident SV-wave in the half-space, 43 = 0) at
the top of the layer resting on a half-space (Fig. 6-13) is studied next. The ratios
|u,|/| A% | and |w,|/| 4% | and the phase angle of the ratio w,/u, are shown in
Fig. 6-35 for the site with increasing stiffness. As in the case of P-waves, the
results of the half-space shown in Fig. 6-7 are recovered in Fig. 6-35 for @ = 0.
Again, the peaks of |u,| and | w,| do not arise at the fundamental frequencies of
the layer in the horizontal and vertical directions, respectively. It is interesting
to compare the curves of |«,| and |w,| for the critical angle y§y = 60° and for
vertical incidence. While for @ = 0, y& = 60° results in higher values of u,
(as discussed above), vertically incident waves lead for increased w to larger u,.
The vertical amplitude w, is equal to zero only for @ = 0. The nonnegligible

F a0y - e Y, = 30
~
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Figure 6-35 Motion at top of layer, incident SV-wave, increasing stiffness,
YR = yL = 0.33, (R = {L = 0.05 (after Ref. [6]). (a) Horizontal;
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Figure 6-35 (Continued) (b) vertical; (c) phase angle.

|w,| in Fig. 6-35b are caused mainly by P-waves in the layer. For small w, the
phase angle between w, and u, shown in Fig. 6-35¢ corresponds to that of the
outcropping motion (for ¥, = 60°, the phase angle is indeterminate for @ = 0,
as w, = 0). Based on the information contained in Figs. 6-7 and 6-35a, the hori-
zontal amplification for the outcropping motion |u,}/|u,| follows (Fig. 6-36).
In the light of the fact that for the critical angle w%, = 60°, |u,| = 3.46 | 4A%,], it
is not surprising that the curve for this angle lies below that for vertical incidence
for all frequencies. For the two other shallow angles, the values agree well with
those for y§y = 90° up to approximately the horizontal fundamental frequency
of the layer. For larger frequencies |u,|/|u,| for w% = 10° and = 30° are signif-
icantly larger than for vertical incidence. This is not the case for the correspond-
ing values for P-waves (Fig. 6-31) and is contrary to the results of SH-waves
(Fig. 6-19). The corresponding motion at the base of the layer |u,]/| 4%, | and
|w,|/| A8y | is plotted in Fig. 6-37. For @ = 0, again the outcropping motion
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Figure 6-36 Horizontal amplification outcropping, incident SV-wave, increasing
stiffness, vR = vL = 0.33, {® = {L = 0.05 (Ref. [6]).
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Figure 6-37 Motion at base of layer, incident SV-wave, increasing stiffness,
yR = yL = 0,33, {R = {L = 0.05. (a) Horizontal; (b) vertical.
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shown in Fig. 6-7 results. For &, > 60°, the dips of | u, | arise close to the hori-
zontal natural frequencies of the layer (Fig. 6-37a). For y& < 60°, this is no
longer the case. The dips of | w, | occur below the vertical natural frequencies of
the layer for all inclined waves (Fig. 6-37b). The horizontal amplification within
the layer |u,|/|u,| which follows from Figs. 6-35 and 6-37a is shown in Fig.
6-38. Again, for w§, > 60°, which is the critical angle, the curves for an inclined
SV-wave in the half-space agree well with those for vertical incidence. In contrast
to the corresponding values for P-waves (Fig. 6-33), this no longer holds for
shallow angles of incidence. Large discrepancies arise throughout the frequency
range, also below the horizontal fundamental frequency of the layer, as is not
the case for the corresponding horizontal amplification caused by inclined SH-
waves (Fig. 6-26).
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Figure 6-38 Horizontal amplification within, incident SV-wave, increasing
stiffness, ¥R = vL = 0.33, {®R = {L = 0.05 (Ref. [6]).

The tentative tendencies established for the site with increasing stiffness
in connection with Figs. 6-35 to 6-38 (for an incident SV-wave in the half-space)
are also visible for the site with the homogeneous layer, varying ¢,. Compared
to the dynamic behavior for incident P-waves, the response for the incident
SV-wave is less consistent. The plot of |u3°|/|u?®| (corresponding to Fig. 6-34)
depends strongly on the frequency and differs for the various sites (not shown).
As an example of the homogeneous layer with é, = 5, |u,|/| A%, | is plotted in
Fig. 6-39. The maximum value of |%,| occurs approximately at the horizontal
fundamental frequency of the layer for all w%,. In Fig. 6-40, |u,|/|4,| is shown
for the same parameters. In contrast to the site with increasing stiffness (Fig.
6-38), good agreement for all angles of incidence results up to the horizontal
fundamental frequency (@ = n/2).

Combinations of incident P- and SV-waves. Combinations of
incident P- and SV-waves in the half-space (Fig. 6-4), resulting in a common
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Figure 6-39 Horizontal motion at top of layer, incident SV-wave, homogeneous
layer, & = 5, 7 = 1, vR = vL = 0.33, {R = {L = 0.05.
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Figure 6-40 Horizontal amplification within, incident SV-wave, homogeneous
layer, é; = 5, p = 1, vR = yL = 0.33, {R = {L = 0.05.

phase velocity ¢, are examined next. The complex horizontal and vertical ampli-
tudes « and w of the motion in the control point define the (complex) amplitudes

R and A%, of the incident waves for a specified phase velocity (which, of course,
has to be larger than c*® for an incident P-wave to be able to be present). For the
special case of the control point at the outcrop of bedrock, the inverse of Eq.
6.11 determines this relationship. For the control point at the ground surface
of the site the procedure is analogous. Not only the absolute values, but also the
phase angle, is important. Whereas for vertical incidence u and w are independ-
ent, this no longer applies for inclined body waves. The amplification in each
direction thus depends on the total motion (i.e., on » and w). This is demon-
strated in the following for a combination of incident P- and SV-waves with
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yt = 30° and y§, = 64.3° resulting in a common phase velocity. The ampli-
fication for the outcropping motion in the horizontal direction is shown in
Fig. 6-41a for the homogeneous layer with the indicated parameters for the
following cases: first, for zero vertical motion in the control point (solid line);
second, for a retrograde motion with equal horizontal and vertical absolute
values of the amplitudes (dashed line); and third, with equal horizontal and
vertical absolute values of the amplitudes and a phase angle which leads to
the maximum and minimum amplification (dotted lines). For the third case, the
phase angle is different for the two extremes for each w. Figure 6-41b shows the
corresponding amplification curves in the vertical direction (varying u,). For
the site with increasing stiffness, the corresponding amplifications, based on the
same assumption for the incident inclined body waves in the half-space, are
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Figure 6-41 Amplification outcropping, incident P- and SV-waves, y¥ = 30°,
y &, = 64.3°, homogeneous layer, ¢, =5, p=1, vR=1yL =033, {(R=[L
= 0.05 (Ref. [6]). (a) Horizontal; (b) vertical.
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(a) Horizontal; (b) vertical.

presented in Fig. 6-42. Whereas the influence of the prescribed motion on the
vertical amplification for all frequencies and on the horizontal amplification
up to the horizontal fundamental frequency of the layer (@ = =/2) is negligible
for the homogeneous layer, this no longer applies for the site with increasing
stiffness; especially for |u,|/|u,|, the influence of w, is strong and cannot be
disregarded. Prescribing the motion at the top of the homogeneous layer, the
corresponding amplification for the motion within the site is plotted for the
same angles of incidence of the inclined body waves in the half-space in Fig.
6-43. It is apparent that below the fundamental frequencies in the horizontal
and vertical directions, |u,|/|u,| and | w,|/| w,|, respectively, are practically inde-
pendent of the assumed motion. This is confirmed to a somewhat lesser extent
by the results of the site with increasing stiffness (not shown). The variation
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of the motion with depth for inclined body waves is compared to that of surface
waves in the next subsection.

6.6.4 Rayleigh Waves

The properties of the only R-mode in a half-space with a retrograde motion,
which propagates with a frequency-independent velocity, are summarized in
Section 6.3.4.

Dispersion and attenuation. For a homogeneous layer resting on
the half-space, the dispersion curves of the first three modes are shown for the
indicated parameters in Fig. 6-44. Without damping, the phase velocity c is real
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Figure 6-44 Dispersion, homogeneous layer, é; =2, g =1, vR = vL = 0.33
(Ref. [6)).

and is thus equal to the apparent velocity ¢, (Eq. 6.6). No attenuation takes
place (J, = 1, Eq. 6.7a). The first (fundamental) R-mode begins at the R-wave
velocity of the rock (half-space) for @ = 0 and converges to that of an elastic
half-space with the properties of the layer for @ — oo. The higher R-modes
start at the value ¢ = c®, and all converge to ¢% for w — oo. In contrast to the
layer resting on a rigid half-space, the dispersion curves do not start at the natural
frequencies of the layer fixed at its base. In particular, the first mode starts at
® = 0. This, however, does not mean that significant radiation damping (effec-
tive in the horizontal direction) takes place in the frequency range below the
horizontal fundamental frequency of the layer, as most of the rate of (horizontal)
energy transmission for the first mode for @ = x/2 is present in the half-space.
Equation 5.150 for the rate of energy transmission N is evaluated at a specific
frequency for the layer and the half-space. The results are then scaled to achieve
Nt + NR = 1. This is indicated with a bar. The values are specified at three
frequencies in Table 6-3. For higher frequencies most of the horizontal energy
transmission occurs in the layer. For the higher modes, the same property

TABLE 6-3 Scaled Rate of Horizontal Energy Transmission,
E.,=2,|—)=1,§R=CL=0

First Mode Second Mode
Dimensionless
Frequency, Layer, Half-space, Layer, Half-space,
wdjck N e i N®
n/4 0.09 0.91
n 0.89 0.11 0.68 0.32

27 1.00 0.00 0.79 0.21
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applies, as can be seen for the second mode in Table 6-3. The same feature is
described for Love waves in Table 6-2.

Introducing damping results in a complex c¢. The apparent velocity ¢, hardly
changes (Fig. 6-44), but attenuation of the motion in the horizontal direction
arises. The direction of energy propagation is no longer horizontal. For instance,
for a damped layer on an undamped half-space, energy propagates vertically
from the half-space to the layer. This energy transmission in the vertical direc-
tion can be verified in a manner analogous to that discussed for Love waves in
Section 6.5.4. The decay factor per wavelength &, (Eq. 6.7a) depends on the ratio
of Im (c) and Re (c). For instance, for an SV-wave propagating in a medium
with a damping ratio {, the phase velocity ¢ = c¢*/m,. The decay factor per wave-
length in the direction of propagation equals exp [—2r Im (c*)/Re (c*)] where
Im (c*)/Re (c*) = { (for small {). Thus the ratio Im (c)/Re (c) can be inter-
preted for R-waves as the effective damping ratio. It is plotted for the first mode
versus @ in Fig. 6-45a. For the case of the damped layer and the undamped
half-space (solid line), the motion is attenuated, in contrast to body waves,
The effective damping ratio starts increasing from zero. This is to be expected,
as the influence of the (undamped) half-space dominates. The effective damping
ratio also converges for high frequencies to {%, as the motion is restricted to the
layer. However, in between, the values are larger than L. For the case of uniform
damping (dashed line), the curves start at {®. The other properties are the same.
It is interesting to note that the peak of the effective damping occurs at a fre-
quency where the inclination of the dispersion curve (Fig. 6-44) is large. For the
hypothetical case of a damped half-space and an undamped layer (dotted line),
the limiting values are as expected. Love waves show the same property (Fig.
6-21a). For the higher modes, as shown in Fig. 6-45b, for the second and the
third, the effective damping behaves identically as for the first mode in the higher-
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Figure 6-45 Attenuation, homogeneous layer, é, =2, g = 1, v&R = yL = (0,33
(Ref. [6]). (a) Effective damping ratio, first mode;
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frequency range. Whereas for an undamped system the cutoff frequencies (above
which the motion does not attenuate) of the higher modes can be determined,
this no longer applies for a damped system, as attenuation occurs throughout
the frequency range. This is discussed for Love waves in connection with Fig.
6-11. In Fig. 6-45b, the curves are drawn only for the frequency range of interest,
where the search procedure to determine the roots of the frequency equation
described in Section 6.2.3 can easily be applied. In Fig. 6-45c, the decay factor
per length d (Eq. 6.7b) is plotted for the first three modes. This displayed infor-
mation follows from that shown in Figs. 6-44 and 6-45a and b. From Fig. 6-45¢
it is visible that the higher modes in the frequency range where they “start” decay
less than the first mode. This is also the case for Love waves (Fig. 6-21b), but
the frequency range where this applies is smaller than for R-waves.

The displacement amplitudes at the top of the homogeneous layer are
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Figure 6-46 Motion at top of layer, homogeneous layer, ¢, = 2,5 = 1, vR = L
= 0.33 (Ref. [6]). (a) Amplitude ratio; (b) phase angle.

examined next. The amplitude ratio |w,|/|#,| and the phase angle of w,/u, for
the first two modes are plotted in Fig. 6-46. For no damping, w, and u, are always
+90° out of phase. The first mode is for this case retrograde throughout the
frequency range (Fig. 6-46b). The ratio |w,|/|u,| = 1.565 for @ = 0 (Fig. 6-46a),
the same value as for the elastic half-space (d — 0, @ — 0). The same value
results for @ — oo, as the motion of the first mode is concentrated at the free
surface (v© = v®). The second mode exhibits prograde and retrograde motions.
Damping changes the motion hardly at all.

For the homogeneous layer with ¢, = 5, the first two modes are examined.
In contrast to the case ¢, = 2, for no damping, the motion of the first mode is
no longer retrograde in the whole range of frequency. A prograde motion arises
for 1.67 < @ < 2.80, a range of practical interest (not shown). The correspond-
ing dispersion curve is shown in Fig. 6-47a. If the damping is increased, the
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(a) Dispersion; (b) effective damping.

’ dispersion curves of the first and second modes become interconnected. While
for {® = (% = 0.03, the dispersion curves are very similar to those for the
undamped case (not shown), for {® = {* = 0.05 the following occurs (Fig.
6-47a): The lower-frequency branch of the first mode is connected to the upper-
frequency branch of the second. If @ is decreased, the upper-frequency branch
of the first mode becomes highly damped and thus loses its practical importance.
This is illustrated in Fig. 6-47b, where the effective damping is plotted. The same
happens to the lower-frequency branch of the second mode for increasing @.

For the site with increasing stiffness, the attenuation of the motion for a
horizontal distance d is for all higher modes less than that of the first throughout
the frequency range (not shown). This is analogous to the attenuation of Love
waves (Fig. 6-23b).
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Displacements and stresses versus depth. To study the motion’s
variation in the vertical direction, the amplification within the site |u,|/|#,|,
| w, |/| w,| and the amplitude ratios | u(z) /| u, ], | w(2) |/| w, | for selected & are plotted
for the homogeneous layer with ¢, = 2 in Figs. 6-48 and 6-49, respectively. In
addition to the values of the R-wave, the results for vertically incident and
inclined body waves are also shown. For the horizontal and vertical motions,
an inclined SV-wave with y§, = 60° and an inclined P-wave with w8 = 30°,
respectively, are selected. Up to the horizontal fundamental frequency of the
layer fixed at its base (@ = n/2), the variation with depth of the horizontal
motion of the first R-mode agrees well with that of the vertically incident and
inclined SV-waves (Fig. 6-48a, left-hand side of Fig. 6-49a). Discrepancies exist,
however, in the vertical motions (Fig. 6-48b, right-hand side of Fig. 6-49a) for
the same frequency range. This tendency is even more pronounced for the site
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Figure 6-48 Amplification within, homogeneous layer, ¢, =2, § = 1, v& = vL
= 0.33, {R = {L = 0.05 (after Ref. [6]). (a) Horizontal; (b) vertical.
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with increasing stiffness (not shown), in contrast to the well-known behavior
of the half-space. At the vertical fundamental frequency of the layer (@ = z),
the variation with depth of the vertical motion of the first R-mode agrees well
with that of the vertically incident and inclined P-waves- (right-hand side of
Fig. 6-49b). For the other frequency ranges, large differences exist. In particular,
the motion of the higher R-mode for the frequency where it “starts” and some-
what above is different from that of the inclined body waves. This is in contrast
to the behavior of the motion of the Love wave when compared to that of the
inclined SH-wave (Fig. 6-24).

The corresponding variation of the amplitudes of the normal stress g, and
of the shear stress 7,, with depth is examined next. Dimensionless stress ampli-
tudes &, and 7,, are defined as o,/[(c%)?p*] and 7,,/[(c%)?p*], respectively. The
variation with depth is presented for |«,|/d = 1 in Fig. 6-50 for the homogeneous
layer. The shear-stress amplitude 7,, (Eq. 5.131b) is smaller for the R-wave and
the inclined SV-wave than for the vertically incident wave. Horizontally propa-
gating waves lead also to a normal-stress amplitude ¢, (Eq. 5.141) which is not
zero at the free surface. The amplitude o , is significant, especially for the R-wave,
and has to be taken into account when designing retaining walls. The amplitude
of the maximum shear stress 7.,,, (determined from o, o, and 7,,) is also plotted
in Fig. 6-50. R-waves, especially, result in a significant 7,,, close to the free
surface. For larger depths, 7,,, is only slightly larger than 7,, for the R-wave
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Figure 6-50 Stress amplitudes versus depth, homogeneous layer, é, = 2,
F=1,vR=yL =0.33, (R = [L = 0.05, @ = =n/2 (Ref. [6]).
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and inclined SV-wave. Analogous behavior results for the site with increasing
stiffness, as is visible from the corresponding plots in Fig. 6-51, with the excep-
tion that 1,,, of the R-wave close to the free surface does not dominate to the
same extent. For a half-space, however, 7., close to the free surface (Fig. 6-9)
dominates even more than for the homogeneous layer (Fig. 6-50).
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Figure 6-51 Stress amplitudes versus depth, increasing stiffness, v = v& = 0.33,
[R=0,{L=0—0.05 a =20 (Ref. [6]).

Scattered motion. Finally, the link of the horizontally propagating
free-field motion to the seismic loading applied to a surface structure is examined.
The radius of the rigid basemat is denoted as a. As discussed in Section 6.2.5,
the ratio wa/c, determines the two translational and the one rocking com-
ponents of the scattered motion, resulting from the in-plane motion. These are
shown in Figs. 7-30 and 7-31. Based on the dispersion curves c,(w), the curves
for the first three R-modes are constructed (for the site with increasing stiffness)
and are shown in Fig. 6-52. The radius a = 0.5d is selected. The corresponding
decay factors calculated for a horizontal distance 10a (= 5d) are also indicated.
For comparison, the dashed straight line corresponding to an incident SV-wave
with &, = 10° and the dotted straight line of the incident P-wave with y§ = 10°
are also shown. As the half-space is not damped, the two body waves do not
decay. For a specific o, wa/c, (which characterizes the wave effects) is larger for
R-waves than for the body waves. The attenuation is significant but not over-
whelming. Considerable wave effects on the seismic input can potentially arise.
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o 2 4 6 s 10 42 Figure 6-52 Applied seismic-input mo-
tion, increasing stiffness, vR = vL = (.33,
DIMENSIONLESS FREQUENCY @d/CY (R =0, {L = 0 — 0.05 (after Ref. [6]).

The influence on the structural response is discussed in depth in Section 9.2,
where it is shown that the difference of the phase angles of the horizontal and
vertical motions is of paramount importance. The corresponding curves wa/c,
versus @ for the site with a homogeneous layer for é, = 2 and = 5canbe drawn
using the information shown in Figs. 6-44, 6-45c, and 6-47a and b, respectively.

6.7 SOFT SITE

To illustrate the practical application of the material we have been discussing,
the response of an actual site of a nuclear power plant is discussed. The response
caused by inclined body waves and by surface waves is compared to that arising
from vertically incident waves. Harmonic excitation and artificial earthquake
time histories are considered.

6.7.1 Description of Site and of Control Motion

The (strain-compatible) properties of this soft site, consisting of layers of
sand and gravel with increasing stiffness and decreasing damping with depth
resting on poor rock, are specified in Table 6-4. The origin of the vertical z-axis
is selected at the free surface. The shear velocity c, varies from 200 to 1500 m/s,
the damping ratio { from 0.07 to 0.02. The first three natural frequencies in the
horizontal direction of the total soil layer of 50 m depth fixed at its base equal
3.0, 7.0, and 10.8 Hz, and the fundamental in the vertical direction equals
7.3 Hz. The basemat of the reactor building is located at a depth of 10.0 m.
The fundamental frequency of the two top layers fixed at z = 10.0 m equals
6.0 Hz. These frequencies are indicated on the abscissas in the following plots,
where appropriate.

The two horizontal and the one vertical control motions consist of arti-
ficial 30-s-acceleration time histories, the response spectra of which follow
U.S. NRC Regulatory Guide 1.60, normalized to 0.30g and 0.20g, respectively
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TABLE 6-4 Free-Field Properties of Soft Site
Shear Wave  Poisson’s
Depth, Shear Modulus, = Mass Density, Velocity, Ratio, Damping Ratio,
z (m) G (MN/m?) p (Mg/m?3) ¢s (m/s) v 4
0
80 2.0 200 0.40 0.07
5
125 2.0 250 0.40 0.06
10
245 2.0 350 0.40 0.05
20
550 2.2 500 0.40 0.05
30
1408 2.2 800 0.40 0.05
40
2400 24 1000 0.35 0.04
50
5625 2.5 1500 0.30 0.02
oo

(Section 3.3.3, Fig. 3-17). The response spectra are shown for a damping ratio
of 5% in Fig. 6-54a and Fig. 6-58 for the out-of-plane and in-plane motions,
respectively. The control point in which this motion is assumed to act is located
either at a (fictitious) rock outcrop at a depth of 50 m or at the free surface.
For the in-plane motion, these two control points are shown in Fig. 6-53. For
this actual site, no dimensionless parameters are introduced.

Figure 6-53 Layered site with nomenclature for in-plane motion.
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6.7.2 Vertically Incident and Inclined SH-Waves

At first, body waves are examined. To study the seismic environment
resulting for the case of out-of-plane motion, the control point is selected at the
top of the rock (z = 50.0 m). At first, the control motion is assumed to act at
the outcrop of this rock. For vertically incident SH-waves, the response spectra
of the resulting motions at selected levels within the site are shown in Fig. 6-54a.
As shown in the parametric study in Section 6.5 for harmonic motion for the
site with increasing stiffness, the frequencies at which the dips of the curve at
the base (z = 50.0 m) occur coincide with the natural frequencies of the site
(Fig. 6-19b). The peaks of the curve at the top of the layer (z = 0) are shifted
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Figure 6-54 Response spectra (5% damping), soft site, out-of-plane motion,
vertical incidence, control point at top rock (Ref. [5]). (a) Control motion
outcropping; (b) control motion within the site.
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somewhat to a higher frequency (Fig. 6-19a). The influence of the free surface
on the frequency content of the motion at z = 10.0 m, resulting in a dip of the
curve at the corresponding frequency, is clearly visible. Specifying the same
(broad-banded) control motion to act as within the site at the same depth of
50 m leads to completely unrealistic values, as is visible in Fig. 6-54b. This again
illustrates the fact that a control point cannot be chosen within the site.

Selecting the outcropping motion to arise from inclined SH-waves with
an angle of incidence in the rock y§; = 10° (Fig. 6-55) results in values at the
free surface (z = 0) which are drastically smaller than those arising from the
same motion for vertical incidence. This confirms the trend established for
harmonic motion (Fig. 6-19a).
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Figure 6-55 Response spectra (5% damping), soft site, out-of-plane motion,
free surface, control motion at rock outcrop (Ref. [S]).

6.7.3 Vertically Incident and Inclined P- and SV-Waves

Turning to the case of in-plane motion, the control motion is again
assumed to act at the outcrop of the rock (z = 50.0 m). The control motion
with the horizontal and vertical components u, and w, is associated with different
wave patterns (Fig. 6-53). The motion given by u, and w, at the free surface can
be determined. For harmonic excitation of circular frequency , the ampli-
fications from outcropping bedrock to the top of the site in the horizontal and
vertical directions, |u,|/|u,| and |w,|/|w,|, are studied first. For instance, |u|
denotes the absolute value of the corresponding horizontal displacement ampli-
tude. Assuming u, and w, to arise from vertically incident SV- and P-waves,
respectively, the amplifications |, |/|u,| and |w,|/|w,| are plotted as solid lines
in Fig. 6-56a and b, respectively. The ratios selecting inclined body waves with
the angle of incidence y of the SV- and P-waves in the rock (superscript R) are
also shown. The observations stated in the parametric study of Section 6.6
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Figure 6-56 Amplification outcropping, soft site, in-plane motion (Ref. [7)).
(a) Horizontal; (b) vertical.

(Figs. 6-31 and 6-36) are confirmed for this actual site. Compared with vertical
incidence, large differences arise, especially for the shallow SV-wave (& = 30°).
For this case, however, |w,|/|u,| ~ 2.5, which of course is quite unrealistic and
can thus be disregarded. Matching the prescribed control motion with a com-
bination of P- and SV-waves leads to amplifications which depend on both
components of the control motion. This is demonstrated in Fig. 6-57 for incident
P- and SV-waves with y§ = 30° and % = 62.4°, resulting in a common
apparent velocity ¢, = 3241 m/s. For the horizontal amplification (Fig. 6-57a)
the following three cases are discussed: first, for zero vertical motion in the
control point (solid line); second, for a retrograde motion with equal horizontal
and vertical absolute values of the amplitudes (dashed line); and third, with equal
horizontal and vertical absolute values of the amplitudes and with a phase
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Figure 6-57 Amplification outcropping, incident P- and SV-waves, R =30°,
p&, = 62.4°, soft site (Ref. [7]). (a) Horizontal; (b) vertical.

angle which leads to the maximum and minimum amplification (dotted lines).
For the third case, the phase angle is different for the two extremes for each
frequency. This procedure is discussed in depth in connection with Fig. 6-41a.
Figure 6-57b shows the corresponding amplification curves in the vertical direc-
tion (varying u,). In particular, the influence of the vertical motion on the
horizontal amplification cannot be neglected. Turning to the transient seismic
excitations, the resulting response spectra for the horizontal and vertical motions
at the free surface are shown for different wave patterns in Fig. 6-58a and b,
respectively. As expected, peaks arise for the vertically incident waves at the
natural frequencies of the layer. First, the outcropping motion is assumed to
arise from incident SV-waves with y%, = 62.4°. The horizontal time history is
matched. This determines the vertical time history (peak acceleration = 0.14g),
which will be different from the vertical control motion. This wave pattern results
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Figure 6-58 Response spectra (5% damping), soft site, in-plane motion, free
surface, control motion at rock outcrop (Ref. [7]). (a) Horizontal; (b) vertical.

at the free surface in a horizontal response, which is smaller than that for vertical
incidence (Fig. 6-58a). This confirms the trend established for harmonic motion
(Fig. 6-56a). Second, if one interprets the vertical control motion as being gen-
erated by incident P-waves with y¥ = 30° (which leads to the same apparent
velocity), the corresponding horizontal time history (0.29¢) does not match the
horizontal control motion. As expected from the results of the harmonic response
(Fig. 6-56b), the vertical response spectrum at the free surface is larger than that
for vertical incidence (Fig. 6-58b). Finally, matching both components of the
control motion by assuming a combination of SV-waves with y&, = 62.4° and
of P-waves with yw§ = 30° results in a horizontal response spectrum which is
smaller than that for vertical incidence, while the two vertical-response spectra
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bear comparison with one another. The drastic reduction arising for inclined
SH-waves (Fig. 6-55) does not occur for inclined P- and SV-waves.

6.7.4 Love Waves

Next, surface waves are examined. Addressing the out-of-plane motion,
the dispersion curves for the first three Love modes are shown in Fig. 6-59.
The shear-wave velocities of the top layer and of the rock are indicated as
dotted lines. Again, the frequency range of steepest descent contains the natural
frequencies of the total layer. The corresponding decay factors at a horizontal
distance = 500 m are plotted for harmonic excitation in Fig. 6-60(a). For
comparison, the curve for an inclined body wave with yfy = 10° is also specified
as a dashed line. For this soft site, Love waves attenuate significantly.
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Figure 6-59 Dispersion, soft site, out-of-plane motion (Ref. [5]).
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Figure 6-60 Attenuation, soft site, out-of-plane motion (Ref. [5)). (a) Decay
factor 500 m distance;
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Figure 6-60 (Continued) (b) Response spectra (5% damping).

When interpreting the control motion to consist of Love waves only, the
control point is chosen at the free surface. As each Love mode attenuates
strongly in its higher-frequency range, the control motion is associated with a
certain mode up to the frequency where the next higher mode starts. The first
three modes are used (the first from 0 to 5 Hz, the second from 5 to 9.8 Hz,
and the third for the remaining frequencies). The response spectra at the control
point and at a horizontal distance = 500 m are plotted in Fig. 6-60b. The lower
attenuation of the second and, to a lesser extent, of the third mode is clearly
visible. For comparison, the same motion at the free surface in the control
point is associated with inclined SH-waves with y&; = 10°. As expected, this
wave train attenuates less, as is visible from the response spectrum at the same
horizontal distance.

To study the variation of the motion with depth, the ratio of the amplitude
at the base (z = 50.0 m) and at the free surface |v,|/|v,| for harmonic response
is plotted in Fig. 6-61a. Results are shown for the first three Love modes, for
the vertically incident SH-wave and for the inclined SH-wave with w% = 10°.
The same properties as discussed in connection with the site with increasing
stiffness used in the parametric study are visible (Fig. 6-26). The corresponding
response spectra at the base of the total layer (z = 50.0 m) are shown in Fig.
6-61b. The Love wave is associated with the first three modes, as discussed
above. The three curves are quite similar; in particular, the dips at the natural
frequencies of the total layer are apparent. The discrepancy of the curves for
the Love wave and for the body waves for the frequencies ranging from a
natural frequency to the frequency where the next higher mode starts, clearly
visible for harmonic excitation (Fig. 6-61a), is also present, but is less pro-
nounced for transient loading (Fig. 6-61b).
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Figure 6-61 Variation with depth, soft site, out-of-plane motion (Ref. [5]).
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6.7.5 Rayleigh Waves

251

Examining the in-plane motion, the dispersion curves for the first three
Rayleigh modes are shown in Fig. 6-62. The shear-wave velocities of the top
layer and of the rock are indicated as dotted lines. For comparison, the
undamped site has also been analyzed. Material damping hardly affects the
apparent velocity c,(®) in the range of interest. The corresponding effective
damping ratio Im (c)/Re (c) and the decay factor for 500 m are plotted in Fig.
6-63a and b, respectively. The ratio of the imaginary and real parts of the phase
velocity ¢ describes the decay factor per wavelength, as explained in connection
with Fig. 6-45. For comparison, the plots for an incident SV-wave with y§, =
10° and for an incident P-wave with w2 = 10° are also specified as a dashed and
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Figure 6-63 (Continued) (c) horizontal response spectra (5% damping).

dotted line, respectively, in Fig. 6-63b. In Fig. 6-63a, the two lines coincide
(dashed line). The second mode actually consists of two branches separated by
a frequency range with very high effective damping. For this soft site, R-waves
attenuate significantly and are virtually nonexistent in the higher-frequency
range.

When one interprets the control motion to consist of R-waves only, the
control point is chosen at the free surface. As each R-mode attenuates strongly
in its higher-frequency range, one component (e.g., the horizontal one of the
motion) is associated with that of a certain mode up to the frequency at which the
next higher mode starts. This defines the other one, in this example the vertical
component, which will, in general, not match the vertical control motion. The
first three modes are used (the first from O to 3.4 Hz, the second from 3.4 to
6.1 Hz, and third for the remaining frequencies). The horizontal response spectra
at the control point and at a horizontal distance = 500 m are plotted in Fig.
6-63c. For comparison, the same horizontal motion at the free surface in the
control point is associated with the horizontal motion of the incident SV-waves
with w& = 10°. As expected, this wave train attenuates less, as is visible from
the response spectrum at the same horizontal distance.

6.7.6 In-Plane Displacements and Stresses versus Depth

To study the variation of the motion with depth, the amplitude ratios
|u(z)|/|u,| and |w(z)|/|w,| for selected frequencies are plotted in Fig. 6-64. In
addition to the values of the R-waves, the results for vertically incident and
inclined body waves are also shown. The amplifications from the free surface to
the depth z = 50 m in the horizontal and vertical directions, |u,!/lu,| and
|w,|/|w,|, are plotted in Fig. 6-65. Similar to the procedure described in con-
nection with Fig. 6-57, a combination of P- and SV-waves with & = 30° and
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wk, = 62.4° is selected which matches the prescribed motion at the free surface.
The amplification | w, |/} w, | is, from a practical point of view, independent of the
prescribed wave pattern throughout the frequency range. For |u,|/|u,| this holds
only for the range up to the fundamental frequency in the horizontal direction.
The horizontal- and vertical-response spectra for various assumptions at the base
of the total layer (z = 50 m) are shown in Fig. 6-66a and b, respectively. The
control point is selected at the free surface. At first, the horizontal and vertical
control motions are assumed to arise from vertically incident waves. The
dips appearing at the natural frequencies of the layer are clearly visible. Second,
the control motion is interpreted as being generated by a combination of P-
and SV-waves with y® = 30° and w8, = 62.4°. The corresponding response
spectra in the horizontal and vertical directions agree well with those of the
vertically incident waves. For the third interpretation of the control motion,
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Figure 6-66 Response spectra (5% damping), soft site, in-plane motion, depth
50 m, control motion at free surface (Ref. {7]). (a) Horizontal; (b) vertical.

only one component is matched. If one identifies the horizontal component of
the control motion with the first three R-modes, as described above, the hori-
zontal response spectrum at 50 m (Fig. 6-66a) lies below that of vertically
incident waves. This can also be seen in Fig. 6-64 for harmonic excitation.
Matching analogously the vertical component of the control motion with the
first three R-modes results in an unrealistically high horizontal acceleration.
This leads to large values of the vertical response spectra at 50 m (Fig. 6-66b).
The good agreement for Love waves and vertically incident SH-waves demon-
strated in Fig. 6-61b is no longer present.

Examining the variation of the stresses with depth, the amplitudes of the
normal stress o, and of the shear stress 7, are plotted for various wave assump-
tions for an harmonic excitation of 2 Hz in Fig. 6-67. The amplitude of the
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Figure 6-67 Stress amplitudes versus depth, soft site, in-plane motion, fre-
quency 2 Hz (Ref. {7]).

maximum shear stress Tm,, (determined from o,, 0,, and 7,,) is also drawn.
The variation with depth is presented for |u,| = 0.1 m. The discontinuities of
o, arise from the layers of the site. The trends established in the parametric study
of Section 6.6.4 (Figs. 6-50 and 6-51) also apply to this actual site. In Fig. 6-68,
the maximum normal stress o, ... is plotted versus depth for the earthquake
time histories for the following wave assumptions indicated in the figure.
Identifying the horizontal motion at the free surface with the first three R-modes
results in a considerable 6, m,,. For the combination of SV- and P-waves, both
components of the control motion are matched. Negligible &, m,x arises for
vertically incident P-waves. For comparison, g, from dead weight is also plotted.

6.7.7 Scattered Motion

For a surface structure with a rigid basemat, for the out-of-plane motion
the loading applied to the structure arising from horizontally propagating waves
consists essentially of a reduced translational and an additional torsional com-
ponent compared to the loading arising from vertical incidence. For the in-plane
motion, the seismic loading is made up of the two reduced translational com-
ponents and an additional rocking component. For both motions the seismic
input motion depends essentially on the ratio wa/c,. For a radius @ = 30 m of
the rigid basemat of a surface structure, this ratio is specified for the first three
Love modes and the SH-wave with & = 10° in Fig. 6-69, and for the first
three R-modes, for an SV-wave with y&, = 10° (dashed line) and for a P-wave
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Figure 6-69 Applied seismic-input motion, soft site, out-of-plane motion

(Ref. [5]).

with w§ = 10° (dotted line) in Fig. 6-70. The decay factors for a horizontal
distance = 500 m are also given. In the range of frequencies where the c,
(and thus the ratio) differ for the inclined body and surface waves, the latter

attenuate strongly.
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Figure 6-70 Applied seismic-input motion, soft site, in-plane motion (Ref. [7]).

6.8 ROCK SITE
6.8.1 Description of Site and of Control Motion

As the motion of the surface waves attenuates strongly for the soft site
discussed in the preceding section, the influence of the traveling wave on the
seismic-input motion is significantly reduced. This may, however, not be the
case for a rock site which is damped less and which has higher apparent veloc-
ities. The site of an actual nuclear power plant is investigated. The dynamic
properties of the rock site, consisting of layers on top of a half-space, are
specified in Table 6-5. The shear-wave velocity increases from ¢, = 1074 m/s
at the free surface to ¢, = 4385 m/s below 120 m. The damping ratio { = 0.02
is constant. The first two natural frequencies in the horizontal direction of the
total layer of 120 m depth fixed at its base equal 6.9 Hz and 15.4 Hz; the
fundamental in the vertical direction equals 13.4 Hz. The same control motion
as that discussed in the preceding section is used. The response spectra of the
horizontal and vertical motions are plotted in Figs. 6-55 and 6-58b, respectively.

6.8.2 Love Waves

The dispersion curves are plotted in Fig. 6-71. The two dotted lines cor-
respond to the shear-wave velocities of the top layer and of the half-space. From
the decay factors shown in Fig. 6-72a for a horizontal distance of 500 m, it is
apparent that the motion attenuates less than for the soft site (Fig. 6-60a).
Besides the results for the first two Love modes, those for an inclined SH-wave
with w2 = 10° in the half-space at z = 120 m are also indicated as a dashed
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TABLE 6-5 Free-Field Properties of Rock Site

Shear Mass Shear Wave Poisson’s Damping
Depth, Modulus, Density, Velocity, Ratio, Ratio,
z (m) G (GN/m?2) p (Mg/m3) ¢; (m/s) v {
0
3.0 2.6 1074 0.35 0.02
5
34 2.6 1144 0.35 0.02
10
5.0 2.6 1387 0.40 0.02
20
8.0 2.6 1754 0.40 0.02
30
12.0 2.6 2148 0.40 0.02
40
18.0 2.6 2631 0.35 0.02
50
27.0 2.6 3223 0.30 0.02
60
31.0 2.6 3453 0.29 0.02
80
38.5 2.6 3848 0.27 0.02
100
46.0 2.6 4206 0.26 0.02
120
50.0 2.6 4385 0.25 0.02
o0

line. Associating the control motion at the free surface with Love waves, the
first mode applies up to 15 Hz (where the second one starts) and the second
mode for the remaining. The smaller horizontal attenuation is also visible in
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Figure 6-71 Dispersion, rock site, out-of-plane motion (Ref. [5]).
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Figure 6-72 Attenuation, rock site, out-of-plane motion (Ref. [5)). (a) Decay
factor 500 m distance; (b) response spectra (5% damping).

Fig. 6-72b. The variation with depth (which for a rock site is less important and
which is not shown here) confirms the trends established for the soft site (Fig.
6-61).

6.8.3 Rayleigh Waves

The dispersion curves for the first two R-modes are shown in Fig. 6-73.
The two dotted lines correspond to the shear-wave velocities of the top layer
and of the half-space. Although damping is small, the motion in the higher-
frequency range is attenuated considerably, as can be seen from the decay factor
at a distance of 500 m from the origin in Fig. 6-74. For comparison, the plots
for an incident SV-wave with y& = 10° and for an incident P-wave y§ = 10°
are also shown as a dashed and a dotted line, respectively.
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To study the characteristics of the motion for different wave assumptions,
the amplitude ratio | w,|/|u,| and the phase angle of w,/u, of the R-waves at the
free surface are shown in Fig. 6-75a and b. The horizontal and vertical compo-
nents of the first and second R-modes are almost perpendicular. For all fre-
quencies, the motions of the first and second R-modes are nearly retrograde
and prograde, respectively. For comparison, the motions of an incident SV-wave
in the half-space with 2, = 10° and of an incident P-wave in the half-space with
w2 = 10° are also shown for the range up to the frequency at which the second
R-mode starts. The motion of the SV-wave in this range is very similar to that
of the first R-mode (Fig. 6-75).

6.8.4 Assumed Wave Patterns

The earthquake motion at the free surface is interpreted as a wave train
made up, at least partially, of R-waves. Two schemes are investigated. First,
the prescribed horizontal component is associated with that of the first R-mode.
This defines the vertical component, which will, in general, not match the pre-
scribed vertical-earthquake excitation. The corresponding horizontal seismic-
input response spectra at the control point (located on the free surface) and ata
distance of 500 m are plotted in Fig. 6-76. As expected from Fig. 6-74, the
motion attenuates especially in the higher-frequency range. For comparison,
the same horizontal motion of the free surface in the control point is associated
with the horizontal motion of the incident SV-wave with w&, = 10°. The
response spectrum at the same distance shows that this wave train attenuates
less. Love waves exhibit the same property (Fig. 6-72b). Second, when a second
wave train is added to the first R-mode, both the prescribed horizontal- and
vertical-earthquake excitations can be matched. For frequencies above 10.8 Hz,
a second R-mode exists (Fig. 6-73) and can be included in the analysis. For
frequencies below 10.8 Hz, only body waves are available in addition to the
first R-mode. The obvious choice for this range of frequency consists of body
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Figure 6-76 Horizontal response spectra (5% damping), rock site, free surface,
motion first R-mode (Ref. [7]).

waves with the smallest apparent velocity [i.e., the SV-wave with & = 10°
(c, = 4454 m/s)]. As the motion of the SV-wave and the first R-mode are very
similar (Fig. 6-75), the equations which have to be solved when simultaneously
matching the horizontal and vertical components will be ill-conditioned. This
results in large amplitudes of these two waves. The corresponding maximum
accelerations of these two wave trains calculated separately equal approximately
2.5g. This scheme thus has to be abandoned. Instead of the SV-wave, a P-wave
with w§ = 10° (c, = 7716 m/s) is used for frequencies below 10.8 Hz. As is
visible from Fig. 6-75, its motion is sufficiently different from that of the first
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Figure 6-77 Horizontal response spectra (5% damping), rock site, free surface,
motion R- and P-waves (Ref, [7]).
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R-mode. The resulting motion will, however, be strongly dispersive because of
the large differences in c,. Up to approximately 10 Hz, the response spectrum
at a distance of 500 m over- and undershoots that in the control point because of
the dispersion of the motion (Fig. 6-77). In the higher-frequency range, the
attenuation caused by damping again dominates.

6.8.5 Scattered Motion

Finally, the ratio wa/c,, which determines the wave-passage effects, is
calculated for this rock site. The radius a = 30 m is used for the results in Figs.
6-78 and 6-79. In Fig. 6-78, this ratio is specified for the first two Love modes.
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Figure 6-78 Applied seismic-input motion, rock site, out-of-plane motion
(Ref. [5]).

FREQUENCY [Hz]

Figure 6-79 Applied seismic-input motion, rock site, in-plane motion (Ref. [7]).
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For comparison, the results for an inclined SH-wave with y%; = 10° are also
shown (dashed line). In Fig. 6-79, the ratio wa/c, for the first two R-modes is
plotted. An incident SV-wave with y§, = 10° (dashed line) and an incident
P-wave with y§ = 10° (dotted line) are also included. The decay factors at a
distance of 500 m are also indicated. The incident body waves lead to a smaller
ratio waj/c, than for the soft site (Figs. 6-69 and 6-70), as c, is significantly larger.
For a specific frequency, the difference in the ratios for the Love-mode and the
inclined SH-wave are more important, as the decay factor is smaller. The same
applies to the difference in the ratios for the R-mode and the inclined SV-wave.

SUMMARY

1. The free-field-site response analysis represents the first and decisive step in
any soil-structure interaction examination. Starting from the prescribed
control motion acting in the selected control point and assuming the nature
of the wave pattern, the free-field motion is determined on the line which
subsequently will form the structure—soil interface.

2. As a broad-banded design-response spectrum or an historic earthquake
record is used to define the control motion, it is meaningful to choose the
control point either at the free surface of the site or at an assumed bedrock
outcrop where the prescribed motion could conceivably exist. Under no
circumstances can the control point be selected within the site at a specific
depth.

3. In general, for a specific site, the mixture of the wave pattern is unknown
because of the lack of data. Nor can it be determined analytically by
modeling the source mechanism and the transmission path. Extreme cases
of wave patterns thus have to be analyzed.

4. Using the familiar direct stiffness method and the substructure technique,
a layered site’s dynamic response caused by vertically incident and inclined
body waves and surface waves is established. Assembling the dynamic-
stiffness matrices of the layers and of the half-space leads to the left-hand
side of the equations of motion of the site. The right-hand side is zero for the
control point at the free surface. For the control point at the outcrop of
the rock, the latter is regarded as the reference-soil system. The right-hand
side is then equal to the product of the dynamic-stiffness matrix of the
half-space and the vector of the control motion. Material dampingisincluded
in the formulation. Selecting the angle of incidence of the inclined body
waves in the half-space determines the apparent velocity (and the wave
number). For surface waves, the amplitudes of the incident waves in the
half-space vanish, which results in a singular dynamic-stiffness matrix of
the site. For a specific frequency, this condition is satisfied only for distinct
phase velocities associated with the different modes. Surface waves are,
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in general, dispersive. Inclined body waves and surface waves propagate
horizontally across the site with an apparent velocity and attenuate. All
variables, although in general complex, are interpreted physically.

. At the free surface, an incident SH-wave is reflected as an SH-wave with

the same amplitude. The horizontal out-of-plane displacement equals twice
the amplitude of the SH-wave for all angles of incidence. An incident
P-wave leads to a reflected P- and SV-wave for all angles of incidence.
The resulting horizontal and vertical in-plane displacements are always
180° out of phase. An incident SV-wave leads to a reflected SV- and P-wave
only for an angle of incidence larger than the critical one, with the hori-
zontal and vertical in-plane displacements being in phase. For an angle of
incidence of the incident SV-wave smaller than the critical angle, only an
SV-wave is reflected and an additional plane wave is created which travels
parallel to the free surface, decaying exponentially with depth. The in-plane
motion at the free surface is prograde or retrograde for an angle of incidence
of the SV-wave larger or smaller, respectively, than 45°,

. For a half-space, no Love wave exists. There is only one (nondispersive)

Rayleigh mode with a retrograde motion which propagates horizontally
with an apparent velocity somewhat smaller than the shear-wave velocity
and whose (frequency-independent) vertical displacement is larger than the
horizontal one.

. For an undamped layer built in at its base, the Love and Rayleigh modes

start at the natural frequencies in the horizontal and in the horizontal/ver-
tical directions, respectively. Thus, below the fundamental horizontal fre-
quency, no surface waves exist. Introducing material damping does not
change these properties from a practical point of view.

For a layer resting on a half-space, the dispersion curves of the Love
modes start at the shear-wave velocity of the half-space (the first at zero
frequency) and converge to the shear-wave velocity of the layer for increas-
ing frequency. The first Rayleigh mode starts at zero frequency with the
R-wave velocity of the half-space and converges to that of the layer. The
higher R-modes exhibit cutoff frequencies, whereby the dispersion curves
start with the shear-wave velocity of the half-space and converge to that of
the layer. All surface waves decay exponentially with depth.

. To identify the key features of the free-field response, a vast parametric

study is performed, varying the location of the control point, the nature
of the wave pattern, and the site properties. Harmonic and transient seismic
excitations for a site consisting of a layer on bedrock and an actual soft
site and a rock site are investigated.

The nature of the wave pattern producing the site response can be classified
with respect to the apparent velocity of the motion propagating horizontally
across the site as follows:

For the out-of-plane motion, the following applies:
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(a) An infinite apparent velocity results from vertically incident SH-waves.
(b) A finite apparent velocity, which, however, is larger than the shear-wave
velocity of the bedrock, arises from incident (inclined) body waves.
(¢) A (frequency-dependent) apparent velocity which lies between the shear-
wave velocity of the bedrock and that of the top layer occurs for
Love waves. In contrast to (a) and (b), for a specific frequency, only
distinct values of the apparent velocity associated with the different
modes exist. The wave train is thus dispersive. In the horizontal direc-
tion, each Love mode attenuates more with increasing frequency.

(d) With an apparent velocity smaller than the shear-wave velocity of the
top layer, no motion is possible.

For the in-plane motion, the following applies:

(a) An infinite apparent velocity results from vertically incident P- and
SV-waves, which determine the vertical and horizontal motions,
respectively.

(b) A finite apparent velocity which is larger than the compression-wave
velocity of the bedrock arises from incident P-waves and from incident
SV-waves (in the bedrock) with an angle of incidence larger than the
critical angle of bedrock. For a layered site, the phase angle between
the vertical and horizontal components depends on the frequency, but
only weakly on the angle of incidence of the P-wave in the bedrock.
For the SV-wave, the behavior is analogous. Arbitrary horizontal and
vertical control motions can be interpreted as being caused by a com-
bination of these two body waves. In contrast to vertically incident
waves, the amplitudes of both waves depend as well on the horizontal
as on the vertical motion.

(c¢) An apparent velocity bounded by the compression-wave velocity and
the shear-wave velocity of the bedrock arises from incident SV-waves
in the bedrock with an angle of incidence smaller than the critical angle
of the bedrock. No incident P-waves exist in the bedrock. For a layered
site, the phase angle is frequency dependent. The horizontal and vertical
control motions cannot be independently prescribed.

(d) A (frequency-dependent) apparent velocity which lies between the
shear-wave velocity of the bedrock and the Rayleigh-wave velocity of
the top layer results from (generalized) Rayleigh waves. In contrast to
body waves, for a specified frequency, only distinct values of the appar-
ent velocity associated with the different modes exist. The wave train is
thus dispersive. For a site without damping, the horizontal and vertical
displacements are always 90° out of phase. The motion of the first
Rayleigh mode is always retrograde in the low- and high-frequency
ranges. In between, the motion can be prograde. Higher modes can
exhibit retrograde and prograde motions. Introducing damping scarcely
affects the ratio of the absolute values of the amplitudes of the motion
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and the phase angle except when the damping ratio of the P-wave is
different from that of the SV-wave. For a frequency below that at which
the second mode starts, the horizontal and vertical motions cannot be
independently prescribed by using only surface waves. For larger fre-
quencies, higher modes exist which can be used to interpret arbitrary
horizontal and vertical control motions.

(¢) With an apparent velocity smaller than the Rayleigh-wave velocity of
the top layer, no motion is possible.

Selecting the control point at the bedrock outcrop (which is meaningful
only for body waves), the motion at the free surface can be calculated. The
amplification of the motion from the outcropping bedrock to the free surface
of the site depends on the properties of the whole site. The more the direc-
tion of the propagation of the SH-wave in the bedrock deviates from vertical
incidence, the more this amplification of the out-of-plane motion (over the
whole frequency range) decreases. The amplification of the vertical motion
for incident P-waves depends only weakly (with a tendency of being some-
what larger compared to vertical incidence) on the angle of incidence in the
bedrock. This applies for a large range of sites. The amplification of the
horizontal motion for incident SV-waves is affected strongly by the angle
of incidence, being larger or smaller than for vertical incidence. For com-
binations of P- and SV-waves, the amplification depends on the character-
istic of the outcropping motion. For statistically independent outcropping
horizontal and vertical control motions, the amplification in the vertical
direction differs only slightly from that for vertical incidence, while that in
the horizontal direction has a tendency to be smaller.

The variation of the motion with depth depends only on the properties of
the site above the level where the motion is calculated. For the in-plane
motion, this applies for a given ratio of the horizontal- and vertical-
displacement amplitudes at the free surface and for a given apparent velocity
(which, of course, have to be compatible with the assumed wave pattern).
For the out-of-plane motion, the nature of the wave pattern is of no practical
significance for the variation of the displacement with depth. For the
in-plane motion, the fundamental frequencies in the horizontal and vertical
directions of the site fixed at this level are important when discussing the
variation with depth. Assuming that the motion results from incident
P-waves in the bedrock, the amplification of the vertical motion within the
site up to this vertical fundamental frequency is practically independent of
the angle of incidence. This no longer holds for SV-waves for shallow angles
of incidence for the amplification of the horizontal motion. Interpreting the
two components of the motion at the free surface as arising from a combina-
tion of incident P- and SV-waves leads to amplifications within the site for
the horizontal and vertical directions which do not depend, from a practical
point of view, on the angle of incidence and on the prescribed motion up
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to the fundamental frequency in the horizontal and vertical directions,
respectively. The variation of the motion for the first R-mode with depth
in the two directions bears comparison, in general, with that of vertically
incident waves up to the corresponding fundamental frequency. The higher
R-modes lead to a completely different variation with depth. The agree-
ments stated in this paragraph do not apply to an elastic half-space.

For inclined SH-waves and for Love waves, additional (horizontal)
shear stresses acting on vertical planes arise. The variation of the maximum
shear stress with depth is very similar to that for vertical incident SH-waves,
with the exception of the immediate vicinity of the free surface. For the
in-plane motion, horizontally propagating waves lead to significant normal
stresses acting in the horizontal direction. Large maximum shear stresses
appear close to the free surface. These will be more pronounced for sites
approaching the elastic half-space.

For inclined body waves and surface waves, the motion varies in the hori-

zontal direction.

(a) In contrast to surface waves, the attenuation of the motion for inclined
body waves depends on the damping of the bedrock and not on that of
of the layers. Surface waves thus attenuate more strongly than do body
waves, especially for soft sites and in the higher-frequency range. Gen-
erally, higher surface modes attenuate less than the first one does.

(b) The apparent velocity depends only weakly on the damping. A finite
apparent velocity results in a reduced horizontal and in an additional
torsional seismic-input component for the out-of-plane motion and in a
reduced horizontal and vertical and in an additional rocking seismic-
input component for the in-plane motion.

For the out-of-plane motion, the control motion is matched with the com-
ponent of the inclined body wave or, using Love waves, is associated with
a certain mode up to the frequency where the next higher mode starts.
This concept is appropriate, as each Love mode decays in the horizontal
direction more for increasing frequency.

For the in-plane motion, if only one component of the control motion
(e.g., the horizontal) is matched, it can be associated either with a body
wave or with an R-wave. In the latter case, a specific mode is used up to
the frequency at which the next higher mode starts, since for a given fre-
quency, the higher modes attenuate less. The other component of the motion
follows. If both components are prescribed, the motion can be interpreted
as arising from a combination of a P- and an SV-wave (with a common
apparent velocity). Surface waves alone cannot be used to match both
components. A body wave has to be included, at least up to the frequency
at which the second mode starts. As the motions of the shallow SV- and
first Rayleigh mode are very similar in this range of frequency, a P-wave
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should be used. For the control motion specified at a fictitious rock outcrop,
only body waves can be assumed.

For the soft site, the surface waves decay significantly, especially in the

range of higher frequencies, where the apparent velocity is considerably
smaller than the shear-wave velocity of the rock. For this site, it seems
sufficient to examine only (extremely shallow) body waves. This does not
apply to a structure-soil system whose fundamental frequency is small, as
below 1 to 2 Hz the decay of the surface waves is small, even in soft soil.
For a rock site, however, throughout the frequency range of interest,
surface waves exist which attenuate little, leading to smaller apparent veloc-
ities than those of extremely shallow body waves.

PROBLEMS

A discrete model to calculate the free-field motion from vertically incident S-waves
of an undamped site consisting of soil layers resting on elastic rock is shown in
Fig. P6-1. The control motion v, is assumed to act at an assumed rock outcrop.
Derive expressions for all variables of the model.

2
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Figure P6-1 Discrete soil model for vertically incident S-waves.

Solution:

For vertically incident waves, the dynamic-stiffness matrices of a layer and of the
half-space are specified in Eq. 5.106. Substituting sin wd/c,~wd|c,and cos wd/c,
~ 1 — w?d?{(2c?) leads to

1 -1 w2pd| 1
-9} )2 |

The spring constant is thus determined as k; = G,/d,, the masses m; = p1di/2,
my = (pid, + p.d>)/2, and so on. The rock’s contribution is equal to
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S2y = iG, 2
n

which is equal to a damper with a coefficient ¢ = p,c,,. The equations of motion
are formulated in Eq. 6.2, with the only load (at node n) specified in Eq. 6.3:

o~ O .
Q = lGnc_‘Uo = PaCsn¥,
sn

The equation of motion of node # is thus formulated in the time domain as

G

pn_lzd _I'Un -+ d"—ll (’Un - Un—l) + pnc.m'[’n = pnc.\'nﬁa

where v, is the total displacement (as a function of time) at node » and ¢, is the
velocity of the outcropping motion.

Show that the Rayleigh-wave equation of the undamped half-space has three real
roots for Poisson’s ratio v less than 0.26 and one real root plus a conjugate pair
for v > 0.26. Verify that in both cases only one of the roots satisfies the condition
that the corresponding motion decays with depth.

Hints:
Squaring Eq. 6.16 and factoring the quantity c2/c? leads to the cubic equation

c? c?
X3 — 8x2 4 x(24 —~ 16%%) -+ 16(;; - 1): 0
p b4

where x = ¢2/c2. (If the sign of one of the two terms in Eq. 6.16 is changed, this
modified equation will also satisfy the cubic equation.) For the motion to cor-
respond to a surface wave, the factors of Bp and Bsy must decay with depth
(Eq. 5.130). This results in the imaginary ks and kt being negative, which is the
case if ¢ < ¢,.
Using the rigorous expressions for the dynamic-stiffness matrices, the eigenvalue
problem that has to be solved to calculate surface waves is transcendental. If the
site is built in at its base (i.e., no half-space has to be modeled), and the dynamic-
stiffness matrices are applied in discrete form (Problems 5.9 and 5.10), the resulting
eigenvalue problem will be quadratic. From a computational point of view, this is
an advantage.

For a single undamped homogeneous layer built in at its base, determine the
equation of the dispersion curve (c/c, versus wd/c;) of the first Love mode using
only one discrete element. Compare with the rigorous solution plotted in Fig. 6-11.

Solution:
The dynamic-stiffness coefficient of the single layer in discrete form (Problem 5.9)

is as follows:
2
(*g*+k§ic—w2£3ii)v =0
Setting the coefficient equal to zero leads to
e 1
c2 71 — 3c?wid?
while the rigorous solution derived from Eq. 6.38 is equal to
c* 1
& T T @A dD




MODELING
OF SOIL

7.1 GENERAL CONSIDERATIONS
7.1.1 Dynamic-Stiffness Matrices of Soil

The soil medium is one of the two substructures in the analysis of soil-
structure interaction. Its model will result in the force-displacement relationship
of the soil defined at the structure-soil interface. This dynamic-stiffness matrix of
the unbounded soil [S%) in the nodes b is referred to the soil system g, as illus-
trated in Fig. 7-1 (ground with excavation). The matrix [S§,] enters directly in
the coefficient matrix of the basic equation of motion (Eq. 3.9).

Modeling the excavated part of the soil (reference subsystem e) is straight-
forward, as it is a bounded domain. A standard finite-element discretization
of the excavated part results in the dynamic-stiffness matrix [S] (Eq. 2.15):

[S] = [KI(1 + 2{i) — w*[M] (7.1

The matrix [S] is decomposed into the submatrices [S,], [Si], and [S,,]. The
subscript b refers to the nodes on the structure-soil interface, the subscript i
to the others (Fig. 7-1). Eliminating the degrees of freedom at nodes i leads to

[Slfb] = [Sbb] - [Sbi][SH]_l[Sib] (7-2)

The superscript e is added to denote this dynamic-stiffness matrix of the total
excavated soil referred to the nodes b.

Adding [Sg] to [S%] results in the dynamic-stiffness matrix of the continu-

ous soil [S£;], discretized in the same nodes b which will subsequently lie on the
structure—soil interface (Eq. 3.6, Fig. 3-3). This matrix [Sf,] appears in the load
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P

Figure 7-1 Dynamic-stiffness matrices of soil.

vector of the basic equation of motion (Eq. 3.9). The matrix [S%,] thus also enters
indirectly on the right-hand side. Even to calculate the scattered motion {uf},
no other matrix of the soil is needed (Eq. 3.12).

Similarly, for a rigid base, [S%,] captures all the dynamic properties of the
soil. The corresponding dynamic-stiffness matrix of the soil [S%] and the
scattered motion {u$} follow from Eqs. 3.16c and 3.19, respectively, whereby for
both, the rigid-body constraints are enforced.

An alternative procedure exists which from a computational point of view
can be advantageous. As the soil subsystem fis a regular domain in contrast to g,
calculating [S/,] will be simpler to perform than [Sg,]. This is demonstrated using
the so-called boundary-element method in Section 7.5. The matrix [S£,] is then
determined by subtracting [Sz,] from [SZ,].

The soil medium on the exterior of the line with the nodes & is assumed to
consist of a layered half-space. If an irregular soil region surrounding the
structure exists, this bounded region is regarded as part of the expanded struc-
ture. This concept is discussed in connection with Fig. 3-8.

To review the key aspects of modeling the unbounded soil, it is instructive
to discuss briefly some procedures that model the soil region with, for example,
finite elements. In the method developed later in this text, this is not necessary.
As it is impossible to cover the unbounded domain with a finite number of ele-
ments with bounded dimensions, an artificial boundary has to be created for
modeling purposes. This is illustrated in Fig. 7-2. Appropriate boundary condi-
tions have to be formulated which must represent the missing soil. Besides
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il il
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Figure 7-2 Finite-element mesh of soil terminated with artificial boundary:
consistent, local (viscous), and elementary.

modeling its stiffness, reflections of the outwardly propagating waves at the
artificial boundary have to be avoided. Conceptionally, the boundary conditions
can be visualized as being determined from the elimination of all dynamic
degrees of freedom not lying on the boundary of a mesh extending to infinity.
Of course, they cannot really be calculated this way. Besides depending on the
type of boundary condition enforced, the location of the artificial boundary is
a function of the level of the material damping of the soil, the frequency range of
interest, the wave velocity, and the duration of the excitation.

The following survey is perforce incomplete. The formulated boundary
conditions can be classified into three groups.

7.1.2 Elementary Boundaries

The first contains the elementary boundary conditions. The soil mesh is
brutally truncated at the artificial boundary, where either a zero displacement or
a zero surface traction is enforced. They act as perfect reflectors for an impinging
wave, not transmitting or absorbing any energy. The trapped energy in the
dynamic system can lead to disastrous results. To improve the situation some-
what, the material damping of the modeled soil is artificially increased to ensure
that the amplitudes of the reflected waves are significantly reduced before
reaching the structure—soil interface. As discussed in Section 5.1.9, the use of
unrealistically high damping will significantly influence the dynamic stiffness of
the soil and will thus result in an erroneous structural response. In addition,
the convergence of the dynamic stiffness of the finite domain to that of the
unbounded one is slow and oscillatory in nature. One type of elementary
boundary is indicated schematically on the vertical boundary in Fig. 7-2.

7.1.3 Local Boundaries

The second group contains the local boundaries. The boundary conditions
do not couple the degrees of freedom of the nodes located on the artificial
boundary. Usually, in each node and for each degree of freedom, they consist
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of a viscous dashpot, in more general cases of a (frequency-dependent) dynamic
stiffness, which can be interpreted as a spring and a dashpot (analogous to the
case of the rod with exponentially increasing area discussed in Section 5.1.6). To
examine the essential features of these local boundaries, the out-of-plane motion
of plane waves in an undamped layered half-space is used for illustration. The
horizontal lower part of the artificial boundary (Fig. 7-2) is addressed first.
An outgoing SH-wave with an angle of incidence sy and with an amplitude Bgy
is assumed to propagate in the positive z-direction as indicated in Fig. 7-3a. At
a given depth, an artificial boundary is introduced which completely absorbs the
wave. (It is convenient to select the origin of the coordinate system on this
boundary.) A reflected wave with an amplitude 4syz thus may not occur. The
out-of-plane displacement with the amplitude v and the shear stress acting on a
horizontal plane with the amplitude 7,, are specified as functions of Aggz and Bgy
in Eqs. 5.98 and 5.100. Solving these two equations at z = 0 for the amplitudes
results in

(1,

Asn 2 (ik;G ”) (7.32)
_1 Tyz

Bsu 2( ik;G v) (7.30)

Figure 7-3 Viscous boundary for out-of-plane motion. (a) Horizontal;
(b) vertical.
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where the wave number k and the parameter ¢ are specified in Eqs. 5.94 and
5.95b. The shear modulus is denoted by G.
Setting Asy = 0 leads to

T,, = —iktGv 7.4
Substituting Eqs. 5.94 and 5.120, Eq. 7.4 is reformulated as

T, = — _é_Gf; (1.5)

The value ¢ denotes the phase velocity. This equation corresponds to the force-
velocity relationship of a dashpot with a damping coefficient ¢, :

¢, = %G (7.6)

For a positive #, the damping force will act in the negative y-direction, as is
expressed by the negative sign in Eq. 7.5. Formulating ¢ and ¢ as a function of
m, = cos ysy using Eqs. 5.93 and 5.95 results in

¢, = ST cﬁ — sin you (7.72)
or
¢, = sin ysgpc, (7.7b)

The damping coefficient which achieves full absorption of an incident SH-wave
is a function of the angle of incidence. Since along the lower artificial boundary,
waves with varying sy will impinge, such a local boundary consisting of a
specific dashpot will always reflect some part of the waves. For a vertically
incident wave,

¢y = pc; (7.8)
a result which is analogous to that of the prismatic rod in Section 5.1.6 (Eq.
5.35). Selecting the damping coefficient to absorb completely a vertically inci-
dent wave,

1,, = —iwpcy (7.9)
follows from Egs. 7.8 and 5.120. Substituting Eq. 7.9 in Eq. 7.3, the ratio of
the amplitudes of the reflected and incident waves results, using Eqgs. 5.93 and
5.95, as

Asy _ —1 -+ sinysn
B~ 1 4 sinysn (7.10)
A better measure for judging the effectiveness of this damper is the ratio of the
absorbed rates of energy transmissions. From Egs. 7.3 and 5.120, it is deduced
that
® = ie(Asu + Bsn)
17,, = iktG(Asy — Bsn)

It follows that % and 7,, are imaginary. Equation 5.122 for the rate of energy
transmission applies to a plane x = constant. In analogy to the case in which a

(7.11)
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plane z = constant, 7,, is replaced by 7,,. It follows that the absorbed rate of
energy transmission in a point of the artificial boundary is proportional to the
product of the imaginary parts of 7,, and 9, that is, to —(4sy + Bsu)(Asu —
Bgu), which is equal to Bd; — A%y As for full absorption Agy = 0, 4%,/B%
represents the ratio of the rates of energy transmissions of the reflected and
incident waves. Whereas for gy = 45°, for example, the amplitude of the
reflected wave is significant (4sy = 0.172Bsy), this no longer applies to its
energy (4%; = 0.030B%).

The vertical boundary (Fig. 7-2) is examined next. The shear stress acting
on a plane x = constant with the amplitude 7,, is specified in Eq. 5.112b as
(Fig. 7-3b)

1,, = —ikGv = —%; (1.12)
This results in a damping coefficient ¢, :
¢ = g (1.13)
For an inclined SH-wave, by using Eq. 5.93, ¢, is reformulated as
¢, = COS n//sucg (7.14)

5

which is the same expression as in Eq. 7.7a for the horizontal boundary, taking
the change in the orientation of the boundary into account. For a Love wave,
it follows from Eq. 7.13 that ¢, is frequency dependent, as the phase velocity ¢
depends on o (dispersion). This means also that for a given frequency, a different
damping coefficient is required for each mode to achieve full absorption.

Analogously, local boundaries can be constructed for the in-plane motion.
These viscous dampers arranged at right angles to each other are shown on the
horizontal boundary in Fig. 7-2 (see Problem 7.2).

Local boundaries can also be established using so-called infinite elements.
These “finite” elements extend, as the name suggests, to infinity. Standard shape
functions are multiplied with terms such as exp (—s) and exp (—iks), where s
is the coordinate extending to infinity. As in the case of the viscous boundary
described above, the form of the wave characterized by the wave number k has
to be known a priori.

For a vertical boundary lying on the surface of a cylinder the following
procedure can also be used. The adjacent soil layer is assumed to be composed
of a series of infinitesimally thin independent layers. Based on the equations of
motion formulated in cylindrical coordinates (Section 5.5), the local dynamic-
stiffness coefficients of the independent layer extending to infinity can be estab-
lished. These are complex and frequency dependent for all degrees of freedom
(horizontal, vertical, torsional). See Problem 7.15. For this case of an embedded
cylinder, the local boundary along the base is derived from an elastic half-space
which is assumed to model the soil under the base of the cylinder.
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7.1.4 Consistent Boundaries

The third group consists of the consistent boundaries. They are able to
absorb perfectly all kinds of waves, that is, all types of body waves with varying
angles of incidence and all surface waves. All impinging waves are thus trans-
mitted fully without any reflections occurring. As is to be expected, all degrees
of freedom on the artificial boundary are coupled. The force-displacement
relationship on a consistent boundary is frequency dependent and can be
visualized as a coupled spring-dashpot system with frequency-dependent coef-
ficients. This is illustrated on the inclined boundary in Fig. 7-2. For each
frequency, all possible wave types, characterized by the wave number k, are
considered. As the consistent boundaries transmit perfectly all waves that can
occur in the soil medium, the boundary can be placed directly on the structure—
soil interface. No finite-element mesh of the (regular) soil is thus needed. In the
following, the modeling of the soil with consistent boundaries is discussed in
depth. The boundary integral-equation procedure, also called boundary-element
method in discretized form, is used to develop the dynamic-stiffness matrix
[Sg,] for any shape of the structure—soil interface. The methods of the other two
groups are not dealt with any further.

7.1.5 Sommerfeld’'s Radiation Condition

In Section 5.1.6 it is demonstrated that for the infinite rod with exponen-
tially increasing area, it is not sufficient for the displacement to die out at infinity
to determine a unique solution. Formulating the so-called radiation condition
excludes the incoming wave, resulting in a unique solution. This boundary
condition to be satisfied at infinity in an unbounded domain is further discussed
for a spherically symmetric solution of the harmonic-wave equation in three
dimensions. Material damping is disregarded. For polar symmetry, all variables
depend on the radial coordinate r only. The amplitude of the only displacement,
which arises in the radial direction, is denoted as u. The radial strain with ampli-
tude €, and the normal strain in any direction perpendicular to r with amplitude
€, are specified as

€, = U, (7.15a)

€ = % (7.15b)

The dynamic-equilibrium equation for harmonic excitation is formulated as
a,,r + -3—(0', - aﬂ) = _Pa)zu (7.16)

where o, and g, are the amplitudes of the stresses in the corresponding direc-
tions. Substituting Eq. 7.15 into Hooke’s law and then introducing the stresses in

Eq. 7.16 leads to the equation of motion
2
", + 2u, — 2r_1; L (1.17)

2
r Cp
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where the dilatational-wave velocity ¢, is defined in Eq. 5.72. Introducing the
wave number k,

k= (7.18)

SIS

Eq. 7.17 is rewritten as
2 2u 2,
Uy, + Tu’r ﬁ '+' k u= 0 (7.19)

Analogously to the case of cylindrical coordinates in Section 5.5.1, the displace-
ment is expressed as a function of the potential ¢ as

u=g,, (7.20)

Substituting Eq. 7.20 into Eq. 7.19 leads to the wave equation expressed in the

potential. This equation is satisfied if the following equation applies for the
product rg:

(r¢)’rr = *kzm? (721)

The solution of this one-dimensional wave equation is

0 — 2XP (r—ikr) 1. pSXP r(ikr) (1.22)

The displacement amplitude u follows from Eq. 7.20 as
u= a(—i2 — i) exp (—ikr) + b(——lz— i) exp (k) (1.23)
r r r r
It should be remembered that the displacement equals the product of the corre-
sponding amplitude and the factor exp (+iwt). As the expression exp [iw(t —
r/c,)] describes a wave propagation in the positive radial direction with the
velocity ¢, the first term in Eq. 7.23 corresponds to an outgoing spherical wave.
Analogously, the second is associated with an incoming wave. Both waves,
which are independent, attenuate with increasing radius.
Consider two points on the boundary of a bounded domain determined by
r, and r,. Enforcing a zero displacement in the two points will result in vanishing
integration constants a and b. The solution is identical to zero throughout the
domain. The solution for specified boundary conditions is thus unique. This no
longer applies for an unbounded domain, as u dies out at infinity (Eq. 7.23).
The solution

. ik . 1/r} + ik/r 1 ik o
7= (= = 5) e (ikn) + 2R (2 4 ) exp (ke — 2r)

(7.24)

vanishes at r = r, (and at r, = o), but is not identical to zero. To enforce a
unique solution, the radiation condition, which excludes the incoming wave,
but includes the outgoing one, has to be formulated at infinity. This so-called
Sommerfeld radiation condition is derived as follows: As the term 1/r? decays
faster than 1/r, only the second term has to be considered [i.e., (1/r) exp (—ikr)
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for the outgoing wave]. Taking the derivative with respect to r results in

(exp (——ikr))" = _fii exp (—ikr) — E&_(;_ik_’_) (7.25)

r

Multiplying by r and observing that the second term on the right-hand side
vanishes for large r compared to the first leads to

lim r[(e—’-‘p—(r—’—k’)) + ikﬂ‘l’—(r“@} —0 (1.26)
The displacement amplitude u of the outgoing wave will thus satisfy
lim r(u,, + iku) =0 (7.27)

r—o

This radiation condition is violated by the displacement amplitude of the
incoming wave, as can easily be verified by substituting (1/r) exp (ikr) for u.
Formulating the radiation condition (Eq. 7.27) will thus lead in an unbounded
domain to a boundary-value problem with a unique solution. Equation 7.27
applies to a three-dimensional situation. In two dimensions, an analogous
relationship exists for the radiation condition which again excludes the incoming
wave (see Problem 7.15).

7.1.6 Use of Analytical Solution

The exclusion of the incoming wave is virtually impossible to achieve
numerically on the artificial boundary of a truncated finite-element mesh. In
an analytical solution, it is, however, in general, quite straightforward. These
analytical solutions, which satisfy all differential equations exactly in addition
to the radiation condition, can be regarded as shape functions in a numerical
scheme. Addressing specifically the task of calculating the dynamic-stiffness
matrix [S§] illustrated in Fig. 7-1, analytical solutions for the continuous layered
half-space without the embedment (reference soil system f) can be constructed.
These will also satisfy exactly the boundary conditions between two adjacent
layers and at the free surface, but not those on the structure-soil interface.
The latter can be enforced only in some average sense. On the exterior of the
structure-soil interface (i.., on that part of the system f that will subsequently
be excavated), fictitious loads with unknown amplitudes are assumed to act.
The corresponding amplitudes of the displacements on the line associated with
the structure-soil interface can be calculated analytically. The amplitudes of the
fictitious loads are then determined so as to satisfy in an average sense the
prescribed displacement conditions of the definition of the stiffness matrix on
the structure—soil interface. This represents the concept of the boundary integral-
equation method, where the discretization is restricted to the irregular boundary
(i.€., the structure—soil interface). This numerical scheme to model the unbounded
domain will thus be accurate and efficient.

Surface foundations are addressed first: The computational procedure to
calculate the dynamic-stiffness matrix in two- and three-dimensional situations
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is derived in Section 7.2. Parametric studies for a rigid strip and for a rigid
circular basemat are discussed in Sections 7.3 and 7.4, respectively. A half-plane
(space), a single layer resting on a half-plane (space), and a layer built in at its
base are analyzed. The scattered motion is addressed in Section 7.4.3. Con-
cepts of the boundary integral-equation method are contained in Section 7.5.
Results of the dynamic-stiffness matrix for embedded foundations are presented
in Section 7.6. Finally, the dynamic stiffnesses of two basemats of irregular
shape on an actual site are calculated in Section 7.7, which are used for studying
the through-soil-coupling effect of two adjacent structures.

7.2 DYNAMIC-STIFFNESS COEFFICIENTS
OF SURFACE FOUNDATION

7.2.1 Woeighted Residual Formulation

The calculation of the dynamic-stiffness coefficients [of a surface foundation
(Fig. 7-4)] represents a mixed boundary-value problem. Over the structure-soil
interface, the displacements are prescribed resulting from the definition of the

d

~T—

Figure 7-4 Surface foundation on
layered half-space.

dynamic stiffness so as to achieve the continuity of displacements between struc-
ture and soil. Surface tractions (stresses) of zero value have to be enforced over
the remainder of the surface. To reduce the problem to one where only surface
tractions are prescribed on the surface, the structure—soil interface is discretized
into elements (Fig. 7-5a). The corresponding surface tractions can then be
expressed as a load to be used in the direct-stiffness approach of structural
analysis applied to the site. The actual value of the surface traction, which is
equal to the load arising from the base and acting on such an element of soil is
unknown, but the distribution of the load expressed as a function of the unknown
nodal values can be chosen. For the triangular element shown in Fig. 7-5b, a
linear distribution of the loading is selected, which is defined by the nodal values
in the corners. For the sake of clarity, only the vertical component is shown.
In each node, three and two components are present in the three-dimensional
and two-dimensional cases, respectively. For a quadrilateral element, a bilinear
expansion can be chosen. As the nodal points are associated with the individual
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a)

#

b)

Figure 7-5 Discretized structure~soil interface. (a) Elements; (b) applied loads;
(c) prescribed displacements.

elements, discontinuities in the loading across the sides of the element will, in
general, arise with this definition. This is shown in Fig. 7-5b. For the examples
discussed in Sections 7.3 and 7.4, a constant load is selected over each element.
The unknown nodal values of the loading acting on the elements can be regarded
as redundant quantities acting on a primary system. The latter, consisting of the
soil, is statically indeterminate. The redundants are to be calculated such that
the prescribed displacements on the structure-soil interface result. This concept
is well known from the static analysis of simple frame structures. Denoting the
unknown load intensities in all nodes as { p}, the load amplitudes on the structure-
soil interface { p(s)} are expressed as

{p()} = [LON P} (7.28)

Here s denotes symbolically a point on the structure-soil interface and [L(s)]
represents the selected interpolation function. The amplitudes of the surface
displacements in the three or two directions {u,(s)} are formulated as

{u ()} = [N P} (7.29)

The calculation of the flexibility-influence functions of the layered half-space
[g(s)] is described further on in this section.

In Fig. 7-Sc the nodes associated with the dynamic-stiffiness matrix of the
foundation are shown. In principle, they are independent of those of the load
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intensities. The corresponding shape functions [N(s)] relate the nodal values of
the displacement amplitudes {«,} to the amplitudes of the displacements of the
structure-soil interface {u(s)}:

{u()} = [N()}u,} (7.30)

The continuity and completeness requirements of the finite-element method have
to be satisfied. In Fig. 7-5¢c, quadratic expansions are indicated. The nodes with
subscript b are shown (for an embedded structure) in Fig. 7-1. For a rigid
basemat, the rigid-body kinematics (as expressed by the transformation matrix
[A4], Eq. 3.13) can be incorporated into N(s). The vector {,} is replaced by {«,},
which denotes the rigid-body degrees of freedom (Fig. 3-5). In this case, {u(s)}
will vary linearly. For instance, for the vertical degree of freedom of a rigid
basemat, N(s) will be a constant of unity.

As only a finite number of load intensities can be introduced, the displace-
ment-boundary condition on the structure-soil interface S cannot be satisfied
exactly (i.e., in every point on S) but only in an average sense as

[, IV Qo)) — (o)) ds = {0} (7.31)

This condition is used to determine the load intensities {p}. The matrix [W¥(s)]
denotes the weighting function, for which various choices are possible. In the
following, [W(s)] = [L(s)] is selected. For instance, for a constant distributed
load acting on each element, the piecewise-constant interpolation function L(s)
will force the difference of {u,(s)} and {u(s)}, integrated over each element of
the structure—soil interface, to vanish.

Substituting Eqs. 7.29 and 7.30 in Eq. 7.31 results in

[G){7} = [T}fus} (7.32)

where
[6] = | [LOFIgE) ds (7.33)
[7]= | [LOYING) ds (7.34)

The flexibility matrix [G] is symmetric. This is easily verified by using Maxwell-
Betti’s reciprocity law, which states that the work of one set of loads with the
displacements of another is equal to the work of the latter loads with the displace-
ments of the former. Formulating this law for the two loading states correspond-
ing to p, and p, results in

[ @R ds = [ (P} ds (7.35)
Substituting Eqgs. 7.28 and 7.29 formulated for p, and p, into Eq. 7.35 leads to

P [ (L@, dspy = p; [ (LW (e ds (7.36)
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where {L(s)}; and {g(s)}, represent the ith columns of [L(s)] and [g(s)], respectively.
Using Eq. 7-33, Eq. 7.36 results in

G, =Gy (7.37)

As is well known from virtual-work considerations applied in finite-clement
analysis, the amplitudes of the concentrated loads {P,} are obtained as

(P} = [ INOF(p()} ds (7.38)

Solving Eq. 7.32 for {p}, substituting Eq. 7.28 in Eq. 7.38, and using Eq. 7.34
results in

{P,} = [TTIG]'[THu:} (7.39)
This defines the dynamic-stiffness matrix [S,,] of the soil as
[S,] = [TTIG]'[T] (7.40)

The superscript f or g is dropped for surface foundations. Obviously, [Sss] is
symmetric.

7.2.2 Green's Influence Function for Two-Dimensional Case

The calculation of the flexibility-influence functions of the layered half-
space (Green’s functions) [g(s)] is discussed next. At first, the two-dimensional
case in the x-z plane is analyzed which is used to calculate strip foundations that
are infinitely long in the y-direction. The coordinate on the structure—soil
interface is thus equal to x. The load amplitudes {p(x)} (arising from the load
intensities { p}) can be expanded in the horizontal direction into a Fourier integral
with terms exp (—ikx), k being the wave number. The following transforms
(Eq. 2.17) apply, whereby use is made of Eq. 7.28.

(P} = 5 [ (ot} exp (k) i

e (7.41a)
= [ eoness oo 21 = 2601
(pG} = [ {pC)} exp (—ikx) dk (
- 7.41b)

= ([ weexp (—ikx) dk){p} = (LGP}

The sign of the argument of the exponential function is the same as introduced
in Sections 5.2, 5.3, and 5.4. As the wave number K runs from —oo to + oo, all
types of waves are treated. In this application k is a real variable, in contrast to
the case when determining the free-field response, where for a damped site k is
complex (Table 6-1).

The out-of-plane and in-plane motions decouple. The distributed q(x) leads
to v(x), the loads p(x) and r(x) to u(x) and w(x) (Fig. 7-6). In the following, the
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P /i >
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Figure 7-6 Substrip with selected constant load distribution.

distributed loads p(x), g(x), and r(x) acting on the line element of width 2 Ab
(substrip) are selected to be constant (p,, g,, r,). The out-of-plane motion is
addressed first. Formulating Eq. 7.41a leads to the amplitudes of the load in the

k-domain:
— 49
ot = £ |

—Ab

+Ab

exp (ikx) dx = 7;4_;( sin kAb (7.42)
The corresponding displacement amplitude in the k-domain v(k) is calculated
applying the direct-stiffness approach to the site. As discussed in Section 6.2,
assembling the dynamic-stiffness matrices of the individual layers [S%] and
of the half space S%; results in the dynamic-equilibrium equation of the site
(Eq. 6.2).
[Ssul{v} = {0} (7.43)

The first element of the vector of the external load amplitudes {Q} is equal to
g(k) of Eq. 7.42. All other elements are zero. Eliminating all displacement
amplitudes {v} with the exception of that corresponding to the surface v(k) from
Eq. 7.43, and then performing an inversion leads to

v(k) = F,(k)q(k) (7.44)

The element F,(k) is the flexibility coefficient (condensed at the surface) for the
out-of-plane motion of the site. The inverse transform of Eq. 7.41b, but formu-
lated for the displacement amplitude, is equal to

o(x) = j_: (k) exp (—ikx) dk (71.45)

The matrices [S,] (Eq. 5.103) and S&; (Eq. 5.104) depend on k¢, which is an even
function of k. The same thus also applies to F,,(k). Substituting Eqs. 7.42 and
7.44 in Eq. 7.45 leads to

o(x) = %[ f sin ,fAwa(k) cos kx dk ]qo (7.46)
0

For a given w, k now varies from 0 to infinity. The various special cases for
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[S&] and S&; and thus also for F,,(k) are specified in Egs. 5.106 to 5.108. In the
static case (w = 0) for a site with a half-plane, the stiffness matrix of the site
[Ssu] will become singular for k = 0 (Eq. 5.108b). The corresponding flexibility
coefficient F, (k) is infinite.

For the in-plane motion, the load amplitudes p(k) and r(k) follow from
Eq. 7.42, substituting the corresponding load amplitudes and intensities p, and
r,. Analogously, the flexibility equation in the k-domain formulated at the sur-

face is equal to
{1.4(16) } _ [Fuu(k) FW(k)J {1.7(/()} (7.47)
iw(k) F,(k) F,,(k)]lir(k)

It should be remembered that to achieve symmetry of the dynamic-stiffness
matrix [Sp.sv] (Egs. 5.134 and 5.135), the amplitudes corresponding to the
vertical direction are multiplied by i. The elements F,(k), F,.(k), and F,,(k) are
even and odd functions of k, respectively. The inverse transformations leading
to u(x) and w(x) follow from Eq. 7.45, replacing the variables. Performing the
appropriate substitutions leads to

{u(x)} B 2( rsinkAb[ F,(k)cos kx F,(k) sinkx} dk) {p,,
o k | —F,(k)sinkx F,,k)coskx

wx)] T
The various special cases for [S% ] and [SE ] which affect F, (k), F,(k), and
F, (k) are described in Eqs. 5.136 to 5.138. Again, the flexibility coefficients will
become infinite for the static case with k = 0, if a half-plane is present.

The [g(s)] matrix introduced in Eq. 7.29 has as elements the coefficients
in Eqgs. 7.46 and 7.48.

} (7.48)

r

o

7.2.3 Green’s Influence Function for Axisymmetric Case

Next, the three-dimensional case is addressed. The load amplitude{ p(x, y)}
could be represented by a Fourier integral with terms exp [—i(kx + [y)], k and /
being the wave numbers. For computational efficiency, the loading is assumed
to act on a (circular) subdisk. This allows cylindrical coordinates to be intro-
duced. The corresponding loading is expanded in a Fourier series in the circum-
ferential direction 6 (integer n = 0, 1, 2, . . .) and into Bessel functions involving
the wave number k in the radial direction r. As k runs from O to infinity, all
types of waves are captured. The corresponding load amplitudes are related by
the following Bessel transform pair

(o, m)} = a, [ A [ (DGO p(r, 6)) dB dr

—a, (J:O r[C(kr)] L: [D(nO][L(r, )] d6 d,>{ pl (7.49a)

= [L(k, m)}{p}
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(p(, 8} = X [DO)] [~ kIC,(kr)Y{pCk, )} dk

= (X 0o [ KC.GerIL(k, m] ak ){p) (7.49b)

n=

= [L(r, O)){p}

The matrix [C,(kr)] contains the Bessel functions, [ D(n8)] sine and cosine func-
tions of nf on the diagonal. The scalar a, is the normalization factor, which is
equal to 1/2% for n = 0 and 1/x for n £ 0.

The transformation of Eq. 7.49b is introduced for the amplitudes of the
displacements and stresses in Section 5.5.2. For instance, for the vector of the
amplitudes of the displacements in the radial, circumferential, and vertical
directions u(r, 8), v(r, 8), and w(r, 8), the diagonal matrix [ D(n8)] consisting of
cos nf, —sin n@, and cos n@ for the symmetric case and sin 7, cos nf, and sin nf
for the antimetric case is specified in Eq. 5.162. From Eq. 5.180, the matrix
[C,(kr)] is identified as

1 n
T'In(kr)n E‘In(k")

[Cukr)] = %J,,(kr) %J,,(kr),, (7.50)

—J(kr)

where J,(kr) denotes the Bessel function of order » of the first kind. This matrix
is postmultiplied by the vector of the amplitudes of the displacements in the
k-domain u(k, n), v(k, n), w(k, n) (as defined in Eq. 5.180) divided by k. The
latter occurs because in Eq. 7.49b a factor & is present in the integrand. The same
transformation exists relating z,.(k, n), 1,,(k, n), and o,(k, n) (divided by k) to
7,,(r, 8), 75.(r, @), and o,(r, 8) (see Eq. 5.182).

The vertical distributed load with amplitude r(s), which acts on a subdisk
of radius Aa and which is selected to have a constant value r,, is examined
first (Fig. 7-7a). Only the zeroth symmetric Fourier term (n = 0) resulting in

Figure 7-7 Subdisk with selected constant load distribution. (a) Vertical;
(b) horizontal.
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constant values around the circumference arises. Formulating Eq. 7.49a and
making use of Eq. 7.50 leads to the amplitude of the load in the k-domain
(divided by k)

2

)= - [ raeny [ rod0dr = —r, f Y Ikrydr (151
27t r=0 6=0 r=0
The following two identities of the Bessel functions are used:
[T, = %% ,-1() (7.52a)
which in integral form is equal to
f x"J._,(x) dx = x"J,(x) + constant (7.52b)
and
[xT ()L, = —X"pi1(X) (7.53)
Using Eq. 7.52b, Eq. 7.51 is formulated as
(k) = — 8%, (kAa) (7.54)

noting that J,(0) = 0.

As expressed in Eq. 5.183, the same dynamic-stiffness matrix of the site
(independent of the Fourier index n) applies for cylindrical coordinates as for
the case of plane waves expressed in Cartesian coordinates. Thus the same
flexibility matrix (condensed at the surface) applies. Analogously to Eq. 747,
this results in displacement amplitudes in the k-domain (divided by k)

{“(k)} - {F“”(k)}r(k) (1.55)

w(k)| — |F,.(k)

The inverse transformation leading to u(r) and w(r) follows from Eq. 7.49b,
formulated for the displacement amplitudes.

{u(r)} _ J = [Ja(kr),, } {u(k)} dk (7.56)
w(r) k=0 —kJ (kr) ] (w(k)
Making use of the identity of Eq.7.53 and substituting Egs. 7.54 and 7.55 leads to
u(r) _ = Fuw(k)Jl(kr)
bl ~ sal [, 1600 {Fw(k)J.,(kr)} de 73

The horizontal distributed load with amplitude p(s) (acting in the
x-direction), which is assumed to have the constant value p,, is discussed next
(Fig. 7-Tb). The radial and circumferential distributions vary as p, cos @ and
—p, sin @, respectively. The first symmetric Fourier term is thus involved.
The corresponding amplitudes of the load in the k-domain (divided by k) are
calculated using Eq. 7.49a.

pk) D, sa (pJ,(kP),, —{—Jl(k,-)}
{q(k)} K fo {Jl(kr) + rJy(kr),, dr (7.58)
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Applying Eq. 7.52, Eq. 7.58 is reformulated as

p(k) = q(k) = 22827, (k Aa) (7.59)

The corresponding displacement amplitudes in the k-domain (divided by k)
follow from the flexibility matrix (condensed at the surface)

u(k) F (k) p(k)
v(k) p = F,(k) (7.60)

Applying the inverse transform of Eq. 7.49b to the displacements leads to the
displacement amplitudes u(r, 8), v(r, 6), and w(r, §). Substituting Eqs. 7.59 and
7.60,

u(r, @) cos 6
o(r, ) = Ta —sin @
w(r, 8) ‘cos 6
Jo(kr) — Jo(kr) i T (kr) + Jy(kr)i F(k)

F,(k)dk | p,

x j:_o Ti(kAa)| J(kr) + Jo(kr) | (kr) — Ty(kr)
_ —2J,(kr) | \F, (k)

I
i
1
1
I I
I I

(1.61)

results, whereby the following identity, which follows from Egs. 7.52a and 7.53,
is used:

[0 = Joo1() — 20,(6) = ZT,(%) — Joa(x) (7.62)

Applying the last identity, J,(kr) could be eliminated in Eq. 7.61. For the distrib-
uted horizontal load in the y-direction with amplitude g,, the same equation
(7.61) applies, with cos § and —sin @ replaced by sin @ and cos 8, respectively.

The coefficients in Eqs. 7.57 and 7.61 determine the influence matrix [g(s)]
of Eq. 7.29.

The influence functions for the disk loaded by a torsion moment and a
rocking moment are specified in Problems 7.12 and 7.13, respectively.

For the sake of illustration, the vertical flexibility-influence function w(s)
is presented. A site consisting of a layer of thickness d resting on a half-space is
used (Fig. 6-13). The shear-wave velocity of the half space ¢® (R stands for rock)
is twice that of the layer ¢ (L denotes the layer). Poisson’s ratio equals 0.33.
This site is also investigated in the Sections 7.3 and 7.4. The dimensionless
frequency cd/c” is selected as 7. A damping ratio of { = 0.001 is introduced.
The vertical-flexibility coefficient in the k-domain F,,(k) (which is used in Egs.
7.47 and 7.55) is plotted as a function of the dimensionless wave number kd in
Fig. 7-8. For four distinct wave numbers, the real and imaginary parts exhibit
sharp peaks, whereby the real part changes sign. For { = 0, the values of the
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second, third, and fourth peaks are infinite. For the selected small value of {,
these peaks remain finite. The dispersion curve representing the dimensionless-
apparent velocity ¢, = c,/c* as function of wd/c% is shown in Fig. 6-44. The
determinant of the inverse of the flexibility matrix vanishes along these curves.
For zero damping, the phase velocity (which is equal to ¢,) is real, and thus
also the wave number k = w/c. The phase velocities of the three Rayleigh
modes for wd/ct = 7 correspond to the value of kd for which the peaks of
F, (k) are infinite. The vertical flexibility-influence function w(s) follows from
the lower equation in Eq. 7.57 for the three-dimensional case and from the
equation involving the lower diagonal element in Eq. 7.48 for two dimensions.
The integrations are performed numerically. No problems arise if a fictitious



292

Modeling of Soil

c 3

4

] a) REAL

'_

Q L, ———- IMAGINARY
)

[T

i

w

Z 1

o

; —_—

g - ST
o NV - -

/
=
g '4- - T L] T
0.0 .5 1.0 1.5 2.0
DIMLESS RADIAL COORDINATE r~/d

% +50

=

] b) REAL
—
2 .- ———- IMAGINARY
|
o o~ _ .
i // \ / X\ /
% w / L A S
fia) ~
= /
>
W_axd 7/
Wi,
[V _//
o
o4
Yo s0 y y T

0.0 5 1.0 1.5 2.0

DIMLESS HbRIZONTHL COORDINATE x/d

Chap. 7

Figure 7-9 Vertical flexibility-influence function (Ref. [8]). (a) Three-dimen-
sional case; (b) two-dimensional case.

damping ratio { = 0.001 is introduced for an undamped site. For a subdisk
with a radius Aa = 0.0705d, w(r) is shown as a function of r/d in Fig. 7-9a.
For the two-dimensional case with a half-width of a substrip Ab = 0.0625d,
w(x) is shown in Fig. 7-9b. As expected, w(s) decays more rapidly with s in
the three-dimensional than in the two-dimensional case.

7.2.4 Element Size and Numerical Integration

The structure—soil interface is discretized into elements that do not have an

extreme aspect ratio. The latter are then replaced by subdisks with the same
area, as the corresponding elements. The number of elements will depend on
the (highest) frequency which is to be transmitted properly. Experience shows
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that at least six points are needed to represent accurately the wavelength 27
¢,/o. The maximum length 2 A/ of an element will thus equal nc,/(3w). If on a
line running across a basemat of length 2/ (e.g., the diameter), m elements are
chosen, the dimensionless frequency a, = wl/c, up to the value 7m/6 is ade-
quately modeled using this criterion.

The integrations in [G] (Eq. 7.33) are performed numerically. For the
clements on the diagonal, 5 X 5 Gaussian-integration points are selected. For
the other elements, 2 X 2 points are chosen. In general, a horizontal load with
amplitude p, will lead to horizontal and vertical flexibility-influence functions
u(s), v(s), and w(s). The same applies to a vertical load. Rigorously taking account
of all components in [G] leads to the dynamic-stiffness matrix [S,,] for welded
contact. As an approximation, the vertical component due to the horizontal
load and the horizontal components due to the vertical load can be omitted
(F,, = F,, = 0 in Egs. 7.48,7.57, and 7.61). This represents the condition of
relaxed contact.

7.2.5 Nondimensionalized Spring and Damping Coefficients

The dynamic-stiffness matrix [S,,] in Eq. 7.40 is decomposed for the three-
dimensional case as follows:

[Sss] = [Kpsd([K] + ia,[c]) (7.63)
The matrix [K,,] contains the static-stiffness coefficients, [k] and [c] the (non-
dimensionalized) spring and damping coefficients, respectively. The variable a,
represents the dimensionless frequency
a, =2 (71.64)
c.\'
where ¢, is the shear-wave velocity of the medium at the surface. For a rigid
basemat, the Eq. 7.63 still applies, replacing b by o. For a symmetric basemat
and for relaxed contact of a surface foundation, [K,,] will be a diagonal matrix.
As discussed in connection with Egs. 7.46 and 7.48, the translational static-
flexibility coefficients for a site with a half-plane are infinite. The static-stiffness
coefficients [K,,], which vanish, can thus not be used to nondimensionalize [S,,]
for the two-dimensional case. Quite arbitrarily, values zG for the translational
degrees of freedom and nGl? for the rotational degrees of freedom can be
chosen (G is the shear modulus of the medium at the surface).

7.3 TWO-DIMENSIONAL RIGID BASEMAT (STRIP FOUNDATION)

To be able to reach conclusions applicable to a wide range of sites, the following
three cases are investigated (Fig. 7-10):

1. The viscoelastic half-plane with Poisson’s ratio v* = 0.33;
2. A single layer of depth 4 and v* = 0.33 built in at its base;
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b)

Figure 7-10 Investigated sites (Ref. [8]).

3. A single layer of depth d and of Poisson’s ratio vt = 0.33 resting on a
half-plane with v® = 0.33. The ratios of the shear-wave velocities c, =
cf/ct and of the mass densities p — P*/p* equal 2 and 1, respectively.

The damping ratios {* and {* are either equal to 0.05 or 0.001, the latter value
representing the undamped case. The same sites are investigated for the free-
field response in Chapter 6. The half-plane and the layer built in at its base
represent limiting cases. A rigid strip foundation with half-width & (two-
dimensional case) is examined. In Section 7.4 a rigid circular foundation (three-
dimensional case) is addressed. For the two sites involving a layer, the depth d
is selected equal to the half-width b. The half-width is subdivided into eight
elements (substrips) of equal length. This results in a total of 16 elements for
the strip. Applying the criterion developed in Section 7.2.4 leads to dependable
results up to the value of the dimensionless frequency a, = wb/c, of over 8.
The spring and damping coefficients are presented up to a, = 10. To nondimen-
sionalize the dynamic-stiffness matrix, the values #G and nGb? are used as ele-
ments for the translational and rotational degrees of freedom, respectively, in
[K,.], which appears in the analogous relation shown in Eq. 7.63 formulated for
a rigid basemat.

In Fig. 7-11a, the spring coefficients k, in the horizontal direction in the
plane, k, in the vertical direction, k,, for rocking, k.4, representing the coupling
between the horizontal direction and rocking and finally k, in the horizontal
direction but out-of-plane, are plotted for the rigid strip on the undamped half-
plane. The corresponding damping coefficients are indicated in Fig. 7-11b.
Welded contact is enforced. The dynamic-stiffness coefficients depend, to a
certain degree, on the frequency of excitation, especially for the rocking and the
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Figure 7-11 Dynamic stiffness of strip, half-plane, no damping, welded contact
(Ref. [8]).

vertical degrees of freedom. Introducing damping reduces the spring coefficients
in the higher-frequency range (Fig. 7-12a) and increases the damping coefficients
in the lower-frequency range (Fig. 7-12b). In addition, the dependency on a, is
reduced.

For the other limiting site (i.e., the layer built in at its base), the dynamic-
stiffness coefficients without and with damping are shown in Figs. 7-13 and 7-14,
respectively. Especially in the high-frequency range, the dynamic-stifiness coeffi-
cients exhibit large oscillations. Even negative spring coefficients arise. In contrast
to the elastic half-plane, the built-in layer exhibits a cutoff frequency below which,
for the case of no damping, no radiation of energy occurs. The damping coeffi-
cients c, and ¢, are zero below the horizontal fundamental frequency of the
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layer [w/2n = c,/(4d)], which corresponds to a, = m/2. For larger frequencies
significant values arise. The values ¢, and c,, are also zero for a, < n/2. In the
range up to the vertical fundamental frequency a, = =, c, and c,, remain small.
For a, > = they increase significantly. With damping, a cutoff frequency no
longer exists. Below the fundamental frequencies, however, the imaginary
parts of the dynamic-stiffness coefficients a,c remain small. In addition, the
dependency on frequency is reduced, and the values of the spring coeffi-
cients are diminished. As expected, the corresponding dynamic-stiffness
coefficients of the layer on half-plane (Figs. 7-15 and 7-16) exhibit charac-
teristics lying between those of the two extreme sites. For the undamped

12

a) kx ———- kg
sl T k‘y ——= kx¢y/b
= —_——e e k
Z Y
.u_‘_] 7N\
= / \\
7 /
i g \
— — 2\ W |
38 o =T N N &
o D N WA
— N~/
o e
& ]
-8 T T T T
0 2 4 6 8 10

b) 6 ———- o

o Csy ——— cx‘y/b
.. cy

24

DAMPING COEFFICIENT

0 2 4 8 8 10
DIMENSIONLESS FREQUENCY a,

Figure 7-15 Dynamic stiffness of strip, layer on half-plane, no damping,
welded contact (Ref. [8]).
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Figure 7-16 Dynamic stiffness of strip, layer on half-plane, with damping,
welded contact (Ref. [8]).

case a cutoff frequency no longer exists. The dependency on frequency is quite
large.

Modifying the contact condition from welded to relaxed hardly affects
any dynamic-stiffness coefficients for the half-plane (results not shown) or
those in the two horizontal directions for the layer built in at its base. For this
site, however, the vertical and rocking coefficients are affected, especially in the
high-frequency range (Fig. 7-17). For the damped site the values agree better
(not shown).

Integrating in the wave-number domain takes all types of waves into
account. Assuming only vertically incident waves corresponds to evaluating the
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equations for k = 0 only, as the phase velocity ¢ is infinite for this case (k =
w/c). The dynamic-stiffness coefficients resulting from this stringent assumption
are compared with the exact values for the strip on the layer on half-plane in
Fig. 7-18. For k, and k, only vertically incident S- and P-waves, respectively,
occur. Even in the higher-frequency range, where Rayleigh waves arise, the
corresponding curves still bear comparison.

7.4 THREE-DIMENSIONAL RIGID BASEMAT
(DISK FOUNDATION)

A rigid circular foundation of radius @ is examined in this section. The same
three sites as defined in Section 7.3 are analyzed (Fig. 7-10). For the two sites
involving a layer, the depth d is chosen equal to the radius a. The results will
allow the analyst to avoid many calculations or at least the plots for a large
range of frequencies can be used to check the results for cases that are not
covered accurately.

7.4.1 Dynamic-Stiffness Coefficients

The radius is subdivided into eight elements (subdisks) of equal radius.
This results in a total of 200 subdisks. (Obviously, a discretization into annular
rings with a finite width would be more efficient; see Problem 7.11.) The spring
and damping coefficients are shown in the frequency range of a, = wajc, up to
10. The static-stiffness coefficients for the three sites, assuming welded and
relaxed contact, are presented in Table 7-1. The values K, and K, denote the
static stiffnesses in the horizontal and vertical directions, respectively (Fig. 7-10).
The value K, is the rocking stiffness and K4, represents the coupling term
involving the horizontal direction and rocking. Finally, the twisting stiffness is
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TABLE 7-1 Static-Stiffness Coefficients
Welded Contact Relaxed Contact
Single Single
Layer Single Layer Single
- on Layer on Layer
Half- Half- Built Half- Half- Built
Coefficient space space in space space in Multiplier
K, 100 132 156 100 132 155 29
K, 102 182 25 100 180 255 A%a
8Ga3
K, 1.03 1.19 1.28 0.99 1.17 1.26 T =)
4(1 — 2v)Ga2
K4, 1.03 0.63 0.25 0 0 0 22— —)
3
K, 100  1.04 106  1.00 104  1.06 @

denoted as K. The selected multipliers correspond to the well-known static-
stiffness coefficients of a disk resting on an elastic half-space. These static-
stiffness coefficients are used to nondimensionalize the dynamic-stiffness
coefficients. All spring coefficients (with the exception of the coupling term) are

equal to 1 for a, = 0.

For the disk resting on top of the undamped half-space, the spring coeffi-
cients and damping coefficients are plotted as a function of a, in Fig. 7-19a and
b, respectively. The degrees of freedom are indicated in the figures. The corre-
sponding values for the damped half-space are shown in Fig. 7-20. Figures
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Figure 7-19 Dynamic stiffness of disk, half-space, no damping, welded contact

(Ref. [8]).
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Figure 7-21 Dynamic stiffness of disk, layer built in at its base, no damping,

welded contact (Ref. [8)).

7-21 to 7-24 contain the dynamic-stiffness coefficients for the layer built in at its
base and for the layer on half-space. The same characteristics as in the two-
dimensional case are visible (Section 7.3). In particular, below the fundamental
frequencies of the layer in the horizontal and vertical directions the damping
coefficients c,, ¢,, and c,, ¢,,, respectively, vanish for the undamped layer built
in at its base (Fig. 7-21b). The damping coefficient of rocking, c,,, which generally
increases for increasing a,, is significantly smaller than those of the translational

degrees of freedom.

The influence of changing the contact condition from welded to relaxed is
examined next. For the elastic half-space all dynamic-stiffness coefficients are



SPRING COEFFICIENT

DAMPING COEFFICIENT

DIMENSIONLESS FREQUENCY a,

Figure 7-22 Dynamic stiffness of disk, layer built in at its base, with damping,
welded contact (Ref. [8]).
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Figure 7-23 Dynamic stiffness of disk, layer on half-space, no damping, welded
contact (Ref, [8]).
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Figure 7-24 Dynamic stiffness of disk, layer on half-space, with damping, welded
contact (Ref. [8]).
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Figure 7-25 Dynamic stiffness of disk, half-space, no damping, relaxed versus

Three-Dimensional Rigid Basemat (Disk Foundation)
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hardly affected. This is shown in Fig. 7-25 for the horizontal and vertical direc-
tions. For the layer built in at its base the dynamic-stiffness coefficients of the
vertical and rocking degrees of freedom are quite sensitive to the formulated
contact condition. This is illustrated in Fig. 7-26. For the damped site the values
agree better (not shown). The coefficients of the other degrees of freedom agree
well even in the undamped case.

7.4.2 Two-Dimensional versus Three-Dimensional Modeling

Finally, the controversial matter of modeling a three-dimensional problem
with a two-dimensional model is briefly addressed. Many aspects exist; here
only that one affecting the dynamic-stiffness matrix of the soil is examined.
A disk is selected as the three-dimensional problem. Besides the strip’s depth,
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Figure 7-26 Dynamic stiffness of disk, layer built in at its base, no damping,
relaxed versus welded contact (Ref, [8]).

which enters only into the static-stiffness matrix [K,], the half-width b of the
equivalent two-dimensional model has to be selected. Arbitrarily choosing
b = a when modeling the disk, it is instructive to examine the ratios of
the damping coefficient to the spring coefficient for the two- and three-
dimensional cases. For a given o this ratio specifies the damping ratio (up to
a factor of 2), as can be concluded from, for example, Eq. 3.54. In Fig. 7-27,
(c/k),_p/(c/k),_p is plotted for the various degrees of freedom as a function
of a, for the half-plane/half-space. In the vertical direction this ratio is > 1
for a, < 8. Especially in the lower-frequency range a large ratio results, sug-
gesting that the two-dimensional model will significantly underestimate the true
three-dimensional dynamic response. For the other degrees of freedom, the
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Figure 7-27 Ratio of damping to spring coefficients, half-plane/half-space, no
damping, welded contact, two-dimensional versus three-dimensional (Ref. [8]).

ratio is also > 1. However, the horizontal and rocking degrees of freedom are
generally coupled, making it more difficult to determine the influence. For
another choice of b (i.e., b # a), the conclusions still apply. The corresponding
results are shown in Fig. 7-28 for the layer built in at its base. For this other
limiting case of a site, no generally applicable statements can be made, except
perhaps the strong dependency on a, (and thus on the equivalent width of
the two-dimensional strip). It is fair to state that a two-dimensional model
cannot be used to represent a truly three-dimensional situation.
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Figure 7-28 Ratio of damping to spring coefficients, layer built in at its base,
no damping, welded contact, two-dimensional versus three-dimensional.
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7.4.3 Scattered Motion

Finally, the scattered motion {2} for a circular rigid basemat with radius a
on the surface of an undamped half-space is calculated. The Poisson’s ratio is
selected as 0.33. The scattered motion {u#} is determined as a function of that of
the free-field {f} using Eq. 3.19. The same number of subdisks as described in
Section 7.4.1 is used. As already discussed in Section 6.2.5, the effects of the
horizontally propagating waves can be characterized essentially by the ratio
wajc,, where ¢, denotes the apparent velocity (of the motion in the positive x-
direction, Fig. 7-29). In the following, relaxed contact is assumed. The free-field

Figure 7-29 Scattered motion for rigid circular basemat for horizontally
propagating wave. (a) Horizontal component coinciding with direction of propa-
gation; (b) horizontal component perpendicular to direction of propagation;
(c) vertical component.

motion uZ (arising from the horizontal component of an inclined P- or SV-wave
or from a Rayleigh wave) results in a translational (horizontal) component with
the amplitude »% (Fig. 7-29a). Because of the self-canceling (filtering) effect,
{ug| will be smaller than |uf| for all wa/c,. The real and imaginary parts of u?
are plotted versus wa/c, in Fig. 7-30. The out-of-plane motion uJ (occurring
from an inclined SH-wave or from a Love wave) leads to a translational (hori-
zontal) component with the amplitude »¢ and to a torsional component with the
amplitude pz (Fig. 7-29b). The latter, which is negligible for small and large
ratios wajc,, reaches a maximum at approximately wa/c, = 2 (Fig. 7-31).. The
free-field motion #4 (from the vertical component of an inclined P- or SV-wave
or from a Rayleigh wave) gives rise to a translational (vertical) component
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Figure 7-30 Translational components of scattered motion of rigid circular
basemat for horizontally propagating wave.
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Figure 7-31 Rotational components of scattered motion of rigid circular base-
mat for horizontally propagating wave.
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with the amplitude w¢ and to a rocking component with the amplitude g (Fig.
7-29c). While the three translational amplitudes |u¢|, |v2|, and |w?| exhibit a
similar variation with wa/c, (Fig. 7-30), the rocking amplitude | 82| is roughly
twice as large as the torsional one |y#| (Fig. 7-31). The corresponding applied
seismic loading is discussed in Section 4.2.2 (Fig. 4-3).

If welded contact were assumed, additional terms would arise in {uz}. These
could, however, be neglected in actual practice. For the free-field motion uf,
an additional rocking component with the amplitude «f would occur, for uf
additional amplitudes w3, %, and for »{ an additional u. Furthermore, strictly
speaking, the wave effects could no longer be characterized only by c,. For
instance, to be able to evaluate the effect of the horizontally propagating com-
ponent u/, the other component #{ would also have to be considered, which
would mean that the type of wave (including its angle of incidence) would have
to be specified.

An approximate procedure is described in Problems 4.2, 4.3, and 4.4.

7.5 DYNAMIC-STIFFNESS COEFFICIENTS
OF EMBEDDED FOUNDATION

7.5.1 Significance of Boundary-Element Method

The boundary-integral-equation method is well suited for modeling the
unbounded soil domain. As analytical solutions exactly satisfying all field equa-
tions and the radiation condition at infinity are used as fundamental solutions,
only the boundary (i.e., the structure-soil interface) needs to be discretized.
Well-established procedures exist for calculating, for a layered half-space, these
analytical solutions, which will, in addition, rigorously enforce the conditions
at the interface of two adjacent layers and at the free surface. The latter results
in only the structure-soil interface having to be modeled by this formulation of
the boundary-element method. This term is used to denote the discretized form
of the boundary-integral-equation method. The discretization effort and the
number of unknowns are thus strongly reduced. For instance, for a three-
dimensional case, only a two-dimensional surface has to be addressed. The
resulting equations will turn out to be coupled, in contrast to the narrow-
banded structure of the finite-element method. Analytically available solutions
are used to supplement numerical procedures in this boundary-element method.

Only the so-called indirect boundary-element method is addressed in this
text. Other formulations with the same base exist, for example, the direct
boundary-element method and other weighted-residual techniques. These are
not examined, as the accuracy of the results is, in general, inferior to that of the
indirect method for the calculation of the dynamic-stiffness matrix, and the
symmetry of this matrix cannot be guaranteed. The direct boundary-clement
method also does not permit a comparison of the displacement associated with
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the discretization with the prescribed displacement along the structure-soil
interface.

A very simple example, the homogeneous built-in layer in out-of-plane
motion, is used for demonstration in Section 7.5.2. The base and the features
of the indirect boundary-element method are discussed. As the analytical
solution is available, the accuracy can easily be evaluated. The formulations are
generalized to the three-dimensional case in Section 7.5.3. In particular, the
procedure for calculating [S5] and [Sf,] is discussed, whereby the latter is easier
to obtain, because a regular domain (i.e., the continuous soil without an excava-
tion) is examined. The procedure to calculate Green’s influence functions (which
are used as fundamental solutions) for distributed loads acting on a layered half-
plane is described for out-of-plane and in-plane motions in Section 7.5.4. As an
example of a three-dimensional application, the horizontal dynamic-stiffness
coefficient of a 2 x 2 pile foundation is examined in Section 7.5.5.

7.5.2 Example to lllustrate Basic Concepts
of Boundary-Element Method

Analytical solution of illustrative example. The static-stiffness
coefficient at the free surface for the out-of-plane motion of the semi-infinite
homogeneous layer (x > 0) built in at its base is calculated (Fig. 7-32). This
corresponds to [Sg,] in the general formulation with [S7,] being equal to 2[SE)
For the sake of conciseness, the superscript g is deleted in this section. The
depth is indicated as d, and G denotes the shear modulus. A linear variation
of the displacement »(z) associated with the stiffness coefficient is selected at
x = 0. As the displacement is zero at the base, only one node at the free
surface with the displacement v, is introduced:

v(z) = N(2)v, (7.65)
where N(z) is the shape function:
NG =1— % (7.66)
e N
b
e — X
Qp b
v(2)
e
tyl

N o-————

Figure 7-32 Investigated layer.
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The static-stiffness coefficient is denoted by S,,. The governing differential
equation

Vyux + V5rr =0 (7.67)
is transformed by the separation of variables
v(x, z2) = X(x)Z(z) (7.68)
into
e L5 (7.69)
The corresponding solution equals
v(x, z) = (a cos kz 4 b sin kz) exp (+kx) (7.70)

For a bounded solution at x — + oo, only the negative sign in the argument of
the exponential function remains. Enforcing the traction-free condition at
z =0,

T,.(x, 0) = Gv,,(x,0) = 0 (7.71)
leads to b = 0. The other boundary condition at the fixed base
o(x,d)=0 (1.72)
results in the characteristic equation
coskd =0 (7.73)
which is satisfied for the discrete values of k,:
k,d:zf'z— L j=1,23... (1.74)
The complete solution follows as
v(x, z) = Y a, cos k;z exp (—k,x) (7.75)
7

The corresponding shear stress 1,,(x, z) = Gv,.(x, z) is specified as
T,.(X, 2) = —G 3] a;k; cos k;z exp (—k;x) (71.76)
7

The analytical solution for the prescribed (linear) displacement at x = 0 is
derived by expanding »(z) in Eq. 7.65 into the Fourier series with terms cos k,z:

w2/ (L 2v,
'v(z)—;?( f _0(1 d)cosk,zdz)vbcosk,z S Gy s ki 07D

This determines the coefficients 4, in Eq. 7.75, and thus also 7,,(0, z) as a func-
tion of v,. Integrating the surface traction, which is equal to the negative value
of 7,,(0, z), with the shape function N(z) results in the nodal force Q,:

0, = — L"‘o NGE)Yz,,0, 2) dz (7.782)

which can be rewritten as
Qs = Suts (7.78b)
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Obviously, N(z)T = N(z) for a scalar. However, the equation is specified in the
form applicable to more than one degree of freedom. The stiffness coefficient S,
is given by

Sw=126% (T,ldT (1.79)

This results in the analytical value S,, = 0.543G.

As will be demonstrated later, the response for a load acting on the infinite
system is used, that is, on the layer extending to infinity in the positive and
negative x-directions. This so-called fundamental solution is calculated for a
load acting on a line defined by x equals the constant —e:

q(z) = [L(2)}{q} (7.80)
where [L(2)] represents the interpolation function and {q} the load parameters.
In Fig. 7-32, a piecewise linear applied load q(z) with two load parameters ¢,
and ¢, is illustrated as an example. Point loads can also be represented by
choosing delta Dirac functions for [L(z)]. Also for these loading cases, the
calculation can be restricted to the semi-infinite system adjacent to the applied
load and on which only half of the load acts. The boundary condition on the
shear stress for the semi-infinite layer extending in the positive x-direction is
formulated as

Tyx(—e, z) = —%q(Z) (781)
Expanding the load in a Fourier series and equating Eqgs. 7.81 and 7.76 deter-
mines the coefficients a, as
d
a, = L L exp(—ke) f cos k,z [L(2)] dz (g} (1.82)
G k,d =0
The corresponding displacement and surface traction along x = 0 are functions
of {q} and are denoted symbolically as

(0, 2) = [g.(2)}{q} (7.83)
_Tyx(o’ Z) = [gr(z)]{q} (7~84)
where, using Eqs. 7.75, 7.76, and 7.82,

a

[g.2)] = _é_ s F}aexp (—k,e) cos k,z f coskz[L())dz  (1.85)

=0
d

[e.(D] = % ; exp (—k,e) cosk;z f cos k;z [L(2)] d:z (7.86)

=0
Equations 7.85 and 7.86 apply only to the semi-infinite layer extending to the
right of the applied load (e > 0), that is, the load acts on the exterior of the
investigated domain. For loads applied directly to the semi-infinite layer (e < 0),
the following equations for [g,(z)] and [g,(2)] follow:

d
[e(2)] = % ) 1?1,71 exp (k €) cos k,z f cosk,z[L(D]dz  (1.87)

=
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d

[g(2)] = ——}d— ; exp (k,e) cos k,zf cos k,;z [L(2)] dz (7.88)
z=0
As expected, when moving the load across the interface x = 0 (i.e., frome = +¢
to e = —é¢), [g.(2)] is continuous while [g,(z)] shows a discontinuity equivalent
to [L(z)], which represents the load for unit-load parameters.

Weighted-residual technique. A physical explanation of the indi-
rect boundary-element method is given first. Assume that a loading pattern
exists acting on the part x << 0 of the infinite layer and that these loads result
along the line x = O of the infinite layer in the prescribed displacement of unit
nodal value associated with the definition of the stiffness coefficient. In the
actual formulation this can be achieved by selecting the location of the loads
and adjusting their intensities to satisfy this condition. (The line x = 0 will
subsequently form the structure-soil interface of the semi-infinite layer.)
Integrating the corresponding surface traction —7,, acting on the line x = 0
with the above-mentioned prescribed displacement will lead to the stiffness
coefficient. It is important to note that all calculations for the stiffness coefficient
of the semi-infinite layer are performed for the infinite layer using the corre-
sponding analytical solution derived above. In general, the results for an infinite
system are readily available, in contrast to those of the semi-infinite system with
an arbitrary structure-soil interface. As in the actual formulation only a finite
number of loads can be chosen, an approximate solution results.

The actual formulation proceeds as follows: Distributed loads and point
loads with initially unknown intensities are assumed to act on a source line S’ of
the infinite system (Fig. 7-33). The line S is offset toward that part of the infinite
system which lies outside the region for which the stiffness coefficient is calculated
(i.e., in the negative x-direction). In the limit it can be moved toward Sup to a
distance € (i.e., x = 0 — ¢). Selecting an interpolation function [L(z")], the load

! I
//,/s' |, S

-00 <
'é 1(z2) o

q(z’)
J; VL

zl

~N

Figure 7-33 Source line and structure-soil interface.
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q(z') is expressed as a function of the unknown source parameters {q} associated
with the values at all nodes:

q(z") = [L(z)}{4} (7.89)

The coordinate z’ denotes symbolically a point on the source line. An example
of such a load distribution is illustrated on the left-hand side of Fig. 7-33. The
displacement v,(z) and the surface traction t,(2) on the line S calculated for the
infinite layer can be formulated as

v,(2) = [8.(2)){4} (7.90)
() =[g@Ng}  [= —7,.0,2)] (7.91)

The matrices [g,(z)] and [g,(z)] contain the influence functions (Green’s functions)
and are specified in Eqs. 7.85 and 7.86. The prescribed displacement v(z)
associated with the stiffness coefficient is specified in Eq. 7.65.

The displacement-boundary condition on the structure-soil interface S
can be satisfied only in an average sense as

[[ wore,e) — v dz =0} (.92

which is used to determine the source parameters {g}. The matrix [#(z)] contains

the weighting functions, for which various choices are possible. The number

of weighting functions must be equal to that of the source parameters. In the

indirect boundary-element method, the matrix of the weighting functions

[W(z] is chosen to be equal to the matrix of the Green’s functions [g,(z)].
Substituting Eqgs. 7.90 and 7.65 in Eq. 7.92 results in

[Gl{q} = [T], (7.93)

where
(6= | [e@Plg.@) dz (7.94)
1= [ 1@ NG dz (199

The flexibility matrix [G] is symmetric, as is easily verified using Maxwell-
Betti’s reciprocity law. For the semi-infinite system, the surface tractions
represent the load. Formulating the reciprocity law for the two loading states
corresponding to ¢, and g, results in

[ @0y, dz = [ t,@0,(e) dz (7.96)

where v,(z); and 7,(z), are the jth and ith elements of the products [g.(2)]l{q} =
2.(2),4; and [g(2)}{q} = g(2).q;> Tespectively. Substituting these relations (Eqgs.
7.90 and 7.91) into Eq. 7.96 leads to

d d
0| 8@eld, dzg, =4, |;

,8dDig2)i dz g, (7.97)
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or, using Eq. 7.94,

G” = G” (7.98)
The concentrated nodal force is obtained as
d
0, = j N@)™,(2) dz (7.99)
z=0
Solving Eq. 7.93 for {g} and substituting Eq. 7.91 in Eq. 7.99 leads to
Q, = [TTIG] [T, (7.100)
The stiffness coefficient S,, is equal to
S, = [TTG]'(T] (7.101)

For a number of degrees of freedom greater than one, it is obvious that the
matrix [S,,] is always symmetric. The choice of the weighting function [W] = [g,]
thus guarantees the symmetry.

As an example, the piecewise-linear load variation with two load param-
eters g, and ¢, shown in Fig. 7-32 acting at e = d is used. The calculated stiff-
ness coefficient equals 0.535G, which is 98.5% of the exact value. Moving the
source line toward the structure-soil interface up to an infinitesimal distance
leads to a coefficient which is equal to 99.39% of the exact value. Solving Eq.
7.93 for {¢g} and substituting in Eq. 7.90, the displacement v,(z) is determined,
which can then be compared with the prescribed (linear) displacement v(z).

The same stiffness coefficient can also be derived by starting with the
reciprocity law formulated for the loading state of the sources (subscript p) and
that corresponding to the enforced displacement v(z) (no subscript):

j "_0 1(2),(z) dz = j ) 1@ 0(e) dz (7.102)

Assuming that the surface traction #(z) corresponding to »(z) can be expressed
as a function of the same source parameters {g},

1(2) = [g2)}g} (7.103)
and making the appropriate substitutions in Eq. 7.102 leads to Eq. 7.101.

7.5.3 Dynamic-Stiffness Coefficients of Soil Domains
Calculated by Boundary-Element Method

Reference soil systems. The three reference soil systems are shown
in Fig. 7-34: the continuous free-field system f, the soil with excavation (system
ground g) and the excavated part of the soil (system e). For instance, the matrix
[S£] specifies the amplitudes of the forces {P,} due to displacements of unit
amplitude {u,} that are applied at the nodes b of the structure-soil interface for
harmonic motion with the excitation frequency w:

{P} = [SE){us} (7.104)
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Figure 7-34 Reference soil systems (Ref. [9]).

The vectors {P,} and {1} contain the amplitudes of the forces P,, Q,, and R, and
of the displacements u,, v,, and w,, respectively, in all nodes. This is illustrated
in Fig. 7-34 for the two-dimensional case.

Generalization to three dimensions for system ground. The
formulation specified for the out-of-plane motion in Section 7.5.2 is generalized
to three dimensions. At the same time, the harmonic response is addressed. In
Fig. 7-35, the nomenclature is illustrated for the calculation of [S%] for the in-
plane motion (i.e., for two dimensions). The prescribed displacement amplitudes
on the structure-soil interface S are specified as

{u()} = [N} (7.105)

where {u(s)} contains the three elements u(s), v(s), and w(s) in the directions of
the three coordinate axes x, y, and z. For a rigid foundation, [N(s)] expresses
rigid-body kinematics. The vector {u,} (which could also be denoted as {u,})
then represents the rigid-body degrees of freedom.

The variation of load amplitudes {p(s’)} with the three components p(s’),
4(s"), and r(s") with initially unknown intensities { p} is assumed to act on a source
line S’. The line S is always offset toward the soil region to be excavated, in
the limit by an infinitesimal amount. These so-called source loads act on the
dynamic system consisting of the continuous soil (i.e., on the layered half-space
without excavation). The vector {p(s’)} is expressed as a function of the source
parameters {p} as

{p(s")} = [L(Y P} (7.106)
Discontinuities can be introduced as shown in Fig. 7-35c. The number of source
parameters has to be larger than or equal to the order of {#,}. The amplitudes
of the displacement {u,(s)} with the components u,(s), v,(s), and w,(s) and of
the surface traction {z,(s)} with the components ?,.(s), ¢,,(s), and t,.(s) on the
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Figure 7-35 Elements of discretization (Ref. [9]). (a) Source line and structure—
soil interface; (b) prescribed displacement; (c) selected load distribution.

surface S, which subsequently will form the structure-soil interface, are formu-
lated as

{u,(9)} = [g.(9){ P} (7.107)
{t,(5)} = [g.(9)){ P} (7.108)

The calculation of the Green’s functions [g,(s)] and [g,(s)] of the continuous
layered half-space is discussed in Section 7.5.4. One may note that identical
Green’s functions arise for all the elements of the source line S’ which differ
by a horizontal translation. This results in a saving in the computational effort
associated with the calculation of the Green’s functions. The generalized strain-
displacement matrix is specified as

[T] = [ (2N ds (7.109)
and the flexibility matrix as

[6] = [ [es)Teu(s)] ds (7.110)
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The generalized stress-displacement relationship is equal to

[GYp} = [THu:} (7.111)
The coefficient matrix of the equilibrium equation is given by [T]". Finally, the
dynamic-stiffness matrix follows as
[S] = [TT1G]'[T] (7.112)
The procedure discussed in Section 7.2 for a surface foundation is obviously
a special case of this indirect boundary-element method, as for this case [g,(s)]
= [L(s)].
For an undamped system, the method breaks down for a frequency equal
to one of the natural frequencies of the soil region bounded by the source line S
and the free surface, built in along the former and free to move along the latter
(Fig. 7-35a). The motion is limited to this soil region, and no response arises
along the line S. If there is no offset, this will thus arise for the natural frequencies
of the excavated part of the soil fixed along the structure-soil interface. The
easiest way to circumvent this problem is to calculate the dynamic-stiffness
coefficients just below and above these frequencies and then to interpolate the
results.

System excavated part. To calculate the dynamic-stiffness matrix
of the excavated part [Sg,], the same equations apply. As the source line S’
always has to be selected as lying outside the investigated domain, it is placed
on the other side of the structure-soil interface S than indicated in Fig. 7-35a.

In practice, [S5,] can also be calculated using finite elements (Section 7.1.1).
This procedure, which will involve the elimination of all nodes not lying on S, is
straightforward, as the excavated part represents a bounded domain.

System free field. Although for the continuous system [ the line S is
not a boundary, the concept of the boundary-element method can still be applied.
The loaded source line S’ has to coincide with the line S to be able to determine
[SZ,]. These applied loads {p(s)} specified in Eq. 7.106 are integrated with the
shape function [N(s)] to determine the concentrated forces {P,} for the indirect
boundary-element method. The matrix [g(s)] in Eq. 7.108 is thus replaced by
[L(s)], which affects the [T] matrix (Eq. 7.109) and the [G] matrix (Eq. 7.110).
The surface tractions {¢,(s)} appearing in Eq. 7.108 are thus replaced by the
load {p(s)}.

It is important to realize that for the calculation of [SZ], [g.(s)] is not
needed and thus does not have to be calculated. Only one Green’s function
([g.(s)]) is determined in this case.

As the calculation of [Sf,] is simpler than [S£,], using boundary-element
methods, it can be advantageous to calculate [Sg,] by the finite-element method
and substract it from [SZ,] (Eq. 3.6) to get [S£]. In the vicinity of the natural
frequencies of the excavated part of the soil built in along the line S, the dynamic-
stiffness matrix [Sg,] will be very large, especially for a soil with small material
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damping. The same also applies to [Sf,]. As [SE] is calculated as the difference
of two large numbers, care must be taken for this range of frequencies when
discretizing, especially as [Sg,] and [S7,] are calculated by two different methods
(see Section 7.6.4).

Finally, it should be noted that [S] and [S},] can be calculated using the
surface tractions {¢5(s)} and {rz(s)}, respectively, resulting from the load {p(s)}
applied on the line S. The vector {#:(s)} denotes the surface traction on that side
which subsequently will be excavated and {¢2(s)} the one on the other side. The
following relationship exists:

{15} + {£:(9)} = {p()} (7.113)
Using Eqgs. 7.108 and 7.106 leads to
[g4(s)] + [gi(s)] = [L(s)] (7.114)

7.5.4 Green's Influence Functions

In the boundary-element method, the so-called fundamental solution (i.e.,
the displacement and surface-traction amplitudes on the line S which subse-
quently will form the structure-soil interface), is needed for applied distributed
and point loads acting on the source line S’ of the continuous system (i.e., of the
soil without excavation). These Green’s functions are thus determined for the
free-field system (Fig. 7-34).

In the following, the equations are summarized for a Cartesian coordinate
system for out-of-plane and in-plane motions. The former occurs along the
y-axis with the displacement amplitudes », the latter in the x-z plane with the
amplitudes ¥ and w. The corresponding amplitudes of the distributed loads are
denoted by ¢, and p, r, respectively.

As an example, the linearly distributed load p(s") acting in the x-direction
with nodal values p, and p, is shown in the upper part of Fig. 7-36. As only
part of the layer is loaded, an additional interface is introduced in node 1.
The layer on which the distributed load acts is first fixed at the two interfaces.
The corresponding reaction forces (external loads) P, R,, P,, and R, are calcu-
lated to achieve this condition, whereby the analysis is restricted to the loaded
layer. They are then applied with the opposite sign to the total system as shown
in the lower part of this figure. To this global response, the analysis of the fixed
layer has to be added to calculate the total one. The analysis of the total system
for loads acting at the interfaces based on the direct stiffness approach is
described in depth in Section 6.2.1. The analysis of the fixed layer is performed
for a distributed load acting on a line x = constant in Sections 5.3.4 and 5.4.4
for the out-of-plane and in-plane motions, respectively. Thus only the modifica-
tions for the inclined line are specified in the following.

It is appropriate to discuss the out-of-plane case first. The load amplitude
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Figure 7-36 Distributed load acting on inclined line over part of layer (Ref. [10)).

g(s) arising from the nodal values g, and ¢, is formulated as
o) =g+ (@~ a5 |8z — x tan ) (7.115)

where & is the Dirac delta function, d the depth of the loaded layer, and «
the angle of the line S’ measured from the horizontal (see Fig. 7-36). The load
is expanded in the horizontal direction into a Fourier integral with terms
exp (—ikx), k being the wave number, as (Eq. 7.41a)

qk, z) = %z f q(x, z) exp (ikx) dx
X - (7.116)
z

= Zt[ql + (g, — q1)d]CXp(ikcotaz)
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The dynamic-equilibrium equation for harmonic motion expressed in terms of
v(k, z) with v(k, z, x) = v(k, z) exp (—ikx) is equal to (Eq. 5.113)

GH—k*v(k, 2) + v,..(k, 2)] = —pwv(k, 2) — q(k, 2) (7.117)

where G* and p denote the (complex) shear modulus and the mass density. By
inspection, a particular solution equals

_ 1 z .
vk, 2) = 5 (b1 + b27) exp (ik cot a z) (1.118)
with
_d? 1 2icot o _
by = G* (kd)*(cot® o, — tz)]:q1 + m(fh ql)} (7.119)
_a 1 _
b, = G* (kd)*(cot? o — tz)(Q: q1) (7.120)

where ¢ is specified in Eq. 5.95b.

With this particular solution specified, the method proceeds as in Section
5.3.4. Then formulating the inverse Fourier transform leads to the Green’s
influence functions in the space domain (Eq. 7.41b).

The procedure is analogous for the in-plane motion. For a linear variation
of the loads in the x- and z-directions, the amplitudes in the k-domain are equal
to (see Eq. 7.116)

plk.2) =5 pi + (2 — pi) g |exp(ikcotaz)  (7.121)

rk, 2) = %z |:r1 oy — rl)ﬂ exp (ik cot & 7) (1.122)

The dynamic-equilibrium equations formulated in terms of u(k, z) and w(k, z)
with the variation in x-direction exp (—ikx) being implied are equal to (Eq.
5.142)
—(A* 4+ 2GMk2u(k, z) + G*u,,(k, z) — k(A* + G*w,,(k, 2)

= — pw?ulk, z) — p(k, z)
_lk(j'* + G*)u’z(k’ Z) - sz*W(k, Z) + (l* + ZG*)w’zz(k: Z)

= —p(DZW(k, Z) - r(k’ Z)

(7.123a)

(7.123b)

where A* denotes one of the Lamé’s constants. A particular solution is specified
as

wi(k, z) = %{ (a1 + a2§> exp (ik cot a 7) (7.1242)

wo(k, z) = %t (c1 4 cz_;_) exp (ik cot & 7) (7.124b)



Sec. 7.5

Dynamic-Stiffness Coefficients of Embedded Foundation

326

Substituting Eq. 7.124 in Eq. 7.123 and identifying the constant and linear terms
leads to the following system of equations for the four constants:

ck? 128 i fck2 V0 ek (
c%zsz — cot? o Ek_dCOt o é(c%z — l)cot ai _Hi(c_g‘z — 1) alw
1 ) 1
Y i U ak2
0 i%irzsz — cot® | 0 i(%;—z— l)cottx a,_s
' ; p e {
cX? i i [c*? ! c*2 2] X2
(c’gz N 1) cotouE —Hi(é-’ B 1) Etz BGE cot* & kd ovz Ot ‘1
! | i
0 E(Cﬁz - 1) cota 0 2 — o cot?a ||e,
_ et i ! c*? I\*/
Dy
_dt 1 P2 Dy
= G Gd)y " (7.125)
r, —r

where s and ¢ are specified in Eq. 5.128. From here on, the procedure is straight-
forward and no details will be specified.

7.5.5 Pile Foundation

Three-dimensional cases can also be calculated by the boundary-element
method. In particular, cylindrical coordinates can be introduced. This topic is
not treated in depth in this text. Only the principle is illustrated.

Three-dimensional loads acting on a layered half-space (Fig. 7-37) can also
be processed by choosing a Fourier series in the circumferential direction 0 and
Bessel functions involving the wave number k in the radial direction r (Sections
5.5.2 and 7.2.3). This allows the dynamic-stiffness matrix of three-dimensional
embedded foundations and of pile groups, including pile-soil-pile interaction,
to be calculated. The source loads can be selected to act along the axes of the
piles. The computational procedure is outlined schematically in Fig. 7-37.

As an example, a foundation with 2 X 2 end-bearing piles in a homogene-
ous layer of soil of depth d (built in at its base) is investigated (Fig. 7-38). The
radius a of a pile and the distance / equal d/40 and d/6.67, respectively. Poisson’s
ratio — 0.33. The ratio of the modulus of elasticity of the pile to that of the soil
equals 200, the ratio of the mass densities 1.67. The damping ratio equals 0.05.
The horizontal dynamic-stiffness coefficient nondimensionalized with the static
value, is decomposed into k, and ia,c,, whereby the dimensionless frequency
a, = wajc, is referred to the radius of the pile. The spring and damping coeffi-
cients are shown in Fig. 7-39. The influence of the cutoff frequency of the layer
at 7/80 is clearly visible.



Figure 7-37 Computational procedure for dynamic-stiffness coefficients of pile
groups: prescribed displacement, source load with corresponding surface trac-
tion and displacement (Ref. [11]).
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- Figure 7-38 Foundation with 2 x 2
Ly piles (after Ref. [12]).
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Figure 7-39 Horizontal dynamic-stiffness coefficient of pile foundation (after
Ref. [12]).
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7.6 EMBEDDED RECTANGULAR FOUNDATION

7.6.1 Scope of Investigation

To evaluate the influence of embedment on the dynamic-stiffness matrix
of the soil, the two extreme cases of a two-dimensional site, the half-plane and
the homogeneous layer with depth d built in at its base, are examined (Fig. 7-40).
The rectangular soil-structure interface, along which welded contact is assumed,
is regarded as rigid. The ratio of embedment to half-width 4/b is varied para-
metrically. Poisson’s ratio equals 0.33. The damping ratio equals 0.001, which
represents the undamped case. For the layer, a damping ratio of 0.05 is also
investigated. The various dynamic-stiffness matrices [S,,] are decomposed as
follows:

[Soo] = [KLI(K] + iale]) (7.126)

a) b)

-<

$
| N Yo x
/ T —t =

.

Figure 7-40 Investigated sites (Ref. [10]). (a) Half-plane; (b) layer built in at its
base.

The diagonal matrix [K,,] contains the values #G and nGb? for the translational
and rotational degrees of freedom, respectively, where G is the shear modulus,
and [k] and [c] contain the (nondimensionalized) spring and damping coefficients,
respectively. The values &, and k, denote the spring coefficients in the horizontal
and vertical directions; k,, is used for rocking (referred to the center of the rigid
basemat, Fig. 7-40a), and k,,, represents the coupling between the horizontal
direction and rocking. The dimensionless frequency a, is defined as

a, =22 (1.127)
where ¢, is the shear-wave velocity.

In all calculations of the indirect boundary-element method, the source
line S’ coincides with or is offset by an infinitesimal amount from the structure-
soil interface. If a finite offset were selected, the accuracy of the results would be
reduced. Piecewise linearly distributed source loads are used. On the horizontal
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part of the source line four elements are used per half-width. In the vertical
direction, three elements are chosen for A/b = 0.5, four elements for A/b = 1,
and six elements for #/b = 2. The load of the source varies linearly along an
element with continuity enforced at all nodes except the corner one. This results
in a total of 18, 20, and 24 source parameters per half-width, respectively, for
the three cases. If point loads instead of distributed loads were applied, the
quality of the results would be reduced.

Before presenting the dynamic-stiffness coefficients of the parametric
study, typical Green’s functions are discussed. In addition, for one case all
results are examined, that is, the loads acting on the source line, the surface
tractions, and the displacements on the structure-soil interface. The properties
of the dynamic-stiffness coefficients of the three reference soil systems are
addressed and the relationships between them investigated.

7.6.2 Green’'s Influence Function

The foundation with A/b = 0.5 embedded in a half-plane for a, =1 is
used to present Green’s functions. The influence functions for a horizontal load
whose amplitude varies linearly from unity at the free surface to zero at one-
third of the embedment and which acts on a line in the continuous soil, which
will subsequently form the vertical part of the structure-soil interface shown in
Fig. 7-41a, are investigated. This loading distribution corresponds to a source
parameter of unity at the node on the free surface. The source line is selected to
coincide with the structure-soil interface. The corresponding amplitudes of the
displacements in the horizontal and vertical directions #, and w,, which are
the two elements of the column of [g,(s)] (Eq. 7.107) associated with the source
parameter, are shown in Fig. 7-41a and b. Figure 7-4lc and d shows the
corresponding amplitudes of the line tractions ¢, and ¢,,, which are the elements
of a column of [g,(s)] (Eq. 7.108).

DISPLACEMENTS
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\ 71 - O5%(b/6) -

i = —r | e
a) b)
+ + — REAL
TRACTIONS ---- IMAGINARY
tox tpn
\ - : 5 -
i —
c) + d) +

Figure 7-41 Green’s functions for source load of unit amplitude (Ref. [11]).
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7.6.3 Complete Set of Results

For the same case, all results are presented, that is, the amplitudes of the
loads { p(s')} acting on the source line (Eqs.7.106 and 7.111), the amplitudes of
the surface tractions {z,(s)} (Eq. 7.108), and the corresponding amplitudes of the
surface displacements {u,(s)} (Eq. 7.107) on the structure-soil interface. Figure
7-42a, b, and ¢ corresponds to the prescribed displacement amplitudes u,, w,, and
¢,, respectively (Fig. 7-40). It should be noted how well {u,(s)} (Eq. 7.107) agrees
with the prescribed values {u(s)} (Eq. 7.105).

7.6.4 Properties of Dynamic-Stiffness Coefficients
of Excavated Part and System Free Field

The calculation of the dynamic-stiffness matrix of the free field [S{,] is
computationally simpler than that of the reference system ground [S%]. The two
matrices differ by the dynamic-stiffness matrix of the excavated part of the soil
[Ss,], whose properties are first examined.

a) b)
SOURCES SOURCES
X z px z
)
/)
+
2%G*(uy/b) 2%G*(wo/b) 7~
4> “—
TRACTIONS TRACTIONS
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+
2%G* (ug/b) | 24GxCwo/b)
> i >
DISPLACEMENTS ., DISPLACEMENTS
u w
+ i + i
1#b* (Ug/b) 1b* (wo/b)
> “—>
—— REAL ——- IMAGINARY —— REAL ——— IMAGINARY

Figure 7-42 Variation of sources, tractions, and displacements for (Ref. [11]):
(a) Prescribed horizontal displacement; (b) prescribed vertical displacement;
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Figure 7-42 (Continued) (c) prescribed
rocking displacement.

The spring coefficients of the undamped system e with /b = 2 are shown
in Fig. 7-43. The corresponding damping coefficient is identically equal to zero.
As the excavated part is a bounded domain, vibrational modes associated with
natural frequencies can be calculated. Using a very fine finite-element discretiza-
tion (with 50 elements per half-width of the foundation) of the undamped
excavated part built in along the structure—soil interface, the four lowest dimen-
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Figure 7-43 Spring coefficient of exca-
vated part of soil, #/b = 2, no damping
(Ref. [10]).
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TABLE 7-2 Dimensionless Natural Frequencies of Excavated
Part Built in along the Structure-Soil Interface

Symmetric Mode Antimetric Mode
2.11 2.93
4.56 3.04
4.77 4.05
5.67 4.66

sionless natural frequencies are determined and presented in Table 7-2. The
symmetric and antimetric modes apply to the vertical degree of freedom w, and
the horizontal and rocking degrees of freedom u, and @,, respectively. It is
easily verified that at these dimensionless natural frequencies, the corresponding
spring coefficients are infinite. The zero values of k,, k,, and k,, in Fig. 7-43
correspond to the natural frequencies of the excavated part having a rigid-body
constraint enforced along the structure-soil interface, and being supported as
specified in Fig. 7-44a, b and c, respectively. The corresponding frequencies for
the excavated part with these released degrees of freedom are specified in Table
7-3.

The corresponding dynamic-stiffness coefficients of the reference system
ground of the undamped half-plane are shown in Fig. 7-45. As is to be expected,

a) b) ¢)
O .
O 0
0O O
Uo oy
O O ~~

/ e jris
Figure 7-44 Support conditions of excavated part of soil resulting in zero

spring coefficients (Ref. [10]). (a) Horizontal; (b) vertical; (c) rocking.

TABLE 7-3 Dimensijonless Natural Frequencies
of Excavated Part with Released Degrees of Freedom

Uy Wo ¢.‘V
0 0 0
3.02 3.12 2.97
3.59 4.74 3.87

4.44 5.18 4.59
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Figure 7-45 Dynamic stiffness of system ground, half-plane, #/b =2, no
damping (Ref. [11]).

the spring and damping coefficients are smooth curves for this unbounded
domain. Adding [Sg,] (Fig. 7-43) to these values [S§,] (Fig. 7-45) results in the
dynamic-stiffness matrix of the free field [S{,]. The corresponding spring
coefficient is shown in Fig. 7-46. Infinite values for the spring coefficients at the
same frequencies as for the excavated part (Table 7-2) appear. The damping
coefficients of the free field are equal to those of the ground (Fig. 7-45b) for this
undamped system.

In Section 7.5.3 it is suggested to calculate [S§,] by subtracting [S3,] from
[S%]. In the vicinity of the natural frequencies of the excavated part built in
along the structure-soil interface (Table 7-2), a small difference of two large
numbers will occur for the spring coefficient. This can be problematic if the two
systems f and e are discretized using different methods.
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" B 1 |, | Figure 7-46 Spring coefficient of free
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The results for the (undamped) half-plane (Fig. 7-40a) are discussed first.
For comparison the dynamic-stiffness coefficients are presented for the surface
foundation (4/b = 0) in Fig. 7-11. For the embedded foundation, the results
are shown in Fig. 7-47 for /b = 0.5, in Fig. 7-48 for 4/b = 1, and in Fig. 7-45
for /b = 2. Quite surprisingly, the two translational spring coefficients are not
strongly affected by embedment, while the increase of the corresponding damping
coefficients is approximately proportional to the embedment, the increase in the
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Figure 7-47 Dynamic stiffness of system

damping (Ref. [11]).
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horizontal direction being more marked. In the rocking direction, both the spring
and damping coefficients increase with embedment. Augmenting the embedment
results in stronger frequency dependence of the dynamic-stiffness coefficients.

Turning to the foundation embedded in a homogeneous layer (Fig. 7-40b),
the dynamic-stiffness matrix for /b = 1 and d/b = 2 is examined. For the
undamped case, the results are presented in Fig. 7-49. Especially in the high-
frequency range, large oscillations exist. Even negative spring coefficients arise.

SPRING COEFFICIENT
DAMPING COEFFICIENT

DIMENSIONLESS FREQUENCY a, DIMENSIONLESS FREQUENCY a,

Figure 7-49 Dynamic stiffness of system ground, layer built in at its base,
h/b = 1, d/b = 2, no damping (Ref. [11]).

In contrast to the elastic half-plane, the built-in layer exhibits a cutoff frequency,
below which, for the case of no damping, no radiation of energy occurs. The
damping coefficient c, is zero below the horizontal fundamental frequency of
the layer which corresponds to a, = n/4. For larger frequencies, significant
values arise. The coefficients ¢, and ¢,, are almost zero below the vertical funda-
mental frequency a, = n/2. For the damped case (Fig. 7-50), a cutoff frequency
no longer exists. Below the fundamental frequencies, the imaginary part of the
dynamic-stiffness coefficients a,c remains small. In addition, the dependency on
frequency is reduced. The dynamic-stiffness coefficients for a surface foundation
(h/b = 0) resting on the same layer are presented in Fig. 7-14 as comparison.
As expected, the translational spring coefficients depend strongly on the embed-
ment for the layer built in at its base (Figs. 7-50a and 7-14a).

7.6.6 Parametric Study System Free Field

The undamped half-plane (Fig. 7-40a) is addressed first. The results are
shown in Fig. 7-51 for /b = 0.5, in Fig. 7-52 for h/b = 1, and in Fig. 7-46 for
h/b = 2. The dominant effect of [S;,] on the spring coefficients is clearly visible.
For a, approaching zero, [Sg,] tends toward zero. In the low-frequency range,
[SZ,] thus bears comparison with [S%,).
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Figure 7-50 Dynamic stiffness of system ground, layer built in at its base,
h/b = 1, d}b = 2, with damping (Ref. [11]).

Figure 7-51 Spring coefficient of free
field, half-plane, A/b = 0.5, no damping
(Ref. [10]).

Figure 7-52 Spring coefficient of free
field, half-plane, h/b =1, no damping
(Ref, [10]).
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Turning to the foundation embedded in a homogeneous layer (Fig. 7-40b),
the spring coefficients for #/b = 1 and d/b = 2 are examined. For the undamped
case, the results are presented in Fig. 7-53. It is worth mentioning that the
difference of [S{,] and [S§,] (which corresponds to [Sg,]) is the same for the layer
and for the half-plane for the same aspect ratio. For the damped case (Fig. 7-54),
the spring coefficients remain finite for all frequencies.
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Figure 7-53 Spring coefficient of free

3 field, layer built in at its base, h/b = 1,
DIMENSIONLESS FREQUENCY a, d/b = 2, no damping (Ref. [10)).

SPRING COEFFICIENT

Figure 7-54 Spring coefficient of free
field, layer built in at its base, A/b = 1,
DIMENSIONLESS FREQUENCY a, d/b = 2, with damping (Ref. [10]).

7.7 DYNAMIC-STIFFNESS COEFFICIENTS
OF ADJACENT FOUNDATIONS

To be able to analyze the through-soil coupling for seismic excitation of the
reactor building and of the combined reactor-auxiliary and fuel-handling
building shown in Figs. 4-15 and 4-16, the dynamic-stiffness matrix of the coupled
system of the two adjacent foundations is calculated. The results of the dynamic
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calculation of the total system are presented in Section 9.3.1. The two structures
are founded at a depth of 10 m on the soft site introduced in Section 6.7 (Table
6-4), As other structures surround these two bulldmgs, the latter can be assumed
to be founded on the surface of a modified site which actually starts at a depth
of 10 m. In this actual practical case, the relative displacements between the
reactor building and the other structure, hereinafter called reactor-auxiliary
building, is to be calculated. To be able to determine values which are sufficiently
conservative for design, the shear-wave velocities ¢, shown in Table 6-4 (from
a depth of 10 m onward) are reduced by an average of 0.67 by modifying the
dynamic-shear modulus G. The damping ratio of the soil layer is selected as
0.07. The site consists of four layer of soil with ¢, = 240 m/s at the top resting
on bedrock with ¢, = 1000 m/s. Assuming the soil layer to be built in at the
top of the bedrock results in fundamental frequencies of 3.2 Hz and 6.8 Hz in
the horizontal and vertical directions, respectively.

The discretization into subdisks of the two rigid basemats of the reactor and
of the reactor-auxiliary building is shown in Fig. 7-55. Quite a coarse mesh with
149 subdisks is selected, as only displacements are of interest (see Section 4.1).

wobLe

—

,l Ac=3.25m

N 39.80m

Figure 7-55 Plan view of two basemats with subdisk discretization.

After enforcing the geometric constraints of the two rigid basemats, the
dynamic-stiffness matrix of the two foundations will be of order 12 X 12. The
spring and damping coefficients k, and c, of the center of the reactor building
in the horizontal direction are plotted in Fig. 7-56 (k, + iwc,). The values are
shown as a solid line when the reactor-auxiliary building is fixed, and as a
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Figure 7-56 Horizontal dynamic-stiffiness coefficient of reactor building.

dashed line when the reactor-auxiliary building is free ‘o displace as a whole
(external load vanishes). The former are equal to the corresponding elements
of the dynamic-stiffness matrix of the two foundations. The latter are calculated
performing a partial inversion. The values for the reactor building alone are
indicated as a dotted line. As expected, the latter values for the spring coeffi-
cients are the smallest. All values are normalized with the static stiffness corres-
ponding to the reactor building alone. Figure 7-57 shows the corresponding
values k,, and c,, for the rocking degree of freedom. The shape of the funda-
mental mode of the reactor building (being a tall structure) will consist mostly
of the rocking motion. Calculating the corresponding damping ratio wec,,/2k,,
(see, e.g., Eq. 3.54) using the information shown for the reactor building alone
in Fig. 7-57 indicates that, from a practical point of view, only the material
damping of the soil (0.07) contributes. The radiation damping is thus not
effective in the frequency range (~ 2 Hz) of the fundamental mode (Fig. 7-58).
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This is confirmed in Section 9.3.1. For a squat structure for which the horizontal
motion dominates the radiation damping could contribute significantly.

SUMMARY

1. The dynamic-stiffness matrix of the soil with excavation discretized in the
nodes located on the structure-soil interface captures all dynamic properties
of the unbounded medium.

2. On the artificial boundary, which terminates the finite-element mesh of the
soil, three groups of boundary conditions can be identified which model the
missing unbounded soil:

(a) Elementary boundaries, which are perfect reflectors of all impinging
waves, not transmitting or absorbing any energy.

(b) Local (viscous) boundaries, which can be made to act as perfect
absorbers only if the type of the impinging wave is known.

(c) Consistent boundaries, which are perfect absorbers transmitting all types
of impinging waves which can occur in the soil without any reflections
occurring. For any shape of the structure-soil interface, the dynamic-
stiffness matrix of the consistent boundary can be constructed with the
boundary integral-equation procedure (boundary-element method).

3. In an unbounded domain, it is not sufficient for the displacement to die out
at infinity to determine a unique solution. The latter is achieved by enforcing
the radiation condition (at infinity), which excludes the incoming wave.

4. To calculate the dynamic-stiffness matrix of a surface foundation, the
structuresoil interface is discretized into elements. Over each element, a
distribution of the load is assumed. The intensities of these loads (redun-
dants) are determined such that the corresponding displacements of the site
at the surface (primary system) match the prescribed ones associated with
the dynamic-stiffness matrix in an integral sense. Choosing the weighting
function appropriately, a symmetric dynamic-stiffness matrix results.

5. To be able to determine the flexibility-influence functions of the layered
half-space (Green’s functions), the specified distribution of the load of an
element is transformed in the two-dimensional case into a Fourier integral
in the wave-number domain, and in the three-dimensional case it is expanded
in a Fourier series in the circumferential direction, and into Bessel functions
involving the wave-number domain in the radial direction. From the
flexibility equation in the wave-number domain of the site (condensed at
its surface), the corresponding displacements follow. Applying the inverse
transformation leads to the flexibility-influence functions. As this involves
integrals over all possible wave numbers, all types of waves are taken into
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account. All integrals can be performed numerically; to keep poles from
occurring, a fictitious small damping is introduced.

. Based on a parametric study, the following conclusions concerning the

dynamic stiffness of a surface foundation (strip and disk) apply:

(a) The dynamic-stifiness coefficients for a half-space in the horizontal
direction depend only weakly on the dimensionless frequency.

(b) The damping coefficients for a half-space for rocking and twisting
increase with increasing dimensionless frequency and are significantly
smaller than those for the translational degrees of freedom.

(c) The coupling term between the horizontal and rocking motion is
negligible.

(d) Changing the condition of contact hardly affects the dynamic-stifiness
coefficients of the half-space and only somewhat those of the vertical
and rocking motions of the layer built in at its base.

(e) Introducing damping reduces the spring coefficients in the higher-
frequency range and increases the damping coefficients in the
lower-frequency range. In addition, the dependency on the dimension-
less frequency is reduced.

(f) For the layer built in at its base, large oscillations arise, especially in the
higher-frequency range. A cutoff frequency exists below which, for the
case of zero material damping, no radiation of energy occurs. Below
the horizontal fundamental frequency of the layer, the damping coeffi-
cients of the horizontal and of the torsional motions vanish; below the
vertical fundamental frequency, the damping coefficients of the vertical
and rocking motions remain small. Introducing damping, the cutoff
frequency disappears. The damping coefficients, however, remain small.

. A truly three-dimensional situation cannot be modeled with a two-dimen-

sional model.

. For a surface foundation, the three translational components of the scat-

tered-wave motion (which are always smaller than the corresponding
horizontally propagating free-field motions) exhibit approximately the same
decrease (starting from the free-field values) with increasing ratio of the
product of frequency and radius to the apparent velocity. The corresponding
rotational components are zero for very small and very large ratios; the
maximum is reached at a ratio of about 2, the rocking component being
approximately twice as large as the torsional one.

. The boundary-integral-equation method, called boundary-element method

in discretized form, is well suited for modeling the unbounded domain. Only
the structure-soil interface has to be modeled. Analytical solutions available
for a regular domain are used to supplement numerical procedures.

In. the indirect boundary-element method, fictitious loads with initially
unknown intensities are applied on a source line located outside the soil
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region to be investigated (excavated part). These loads act on the dynamic
system consisting of the continuous soil, that is, the layered half-space
without excavation (free field), a system for which the displacement and
surface tractions (Green’s influence functions) on the line which subse-
quently will form the structure—soil interface can be calculated analytically.
The amplitudes of the source loads are then determined so as to satisfy in an
average sense the prescribed displacement condition of the stiffness matrix.
Selecting the weighting functions equal to the Green’s functions for the
surface tractions guarantees the symmetry of the dynamic-stiffness matrix.
The best results occur for: (a) no offset, that is, placing the load at an
infinitestimal distance from the structure-soil interface, and (b) linearly
distributed loads (in contrast to using concentrated loads). The displace-
ments arising from the applied loads can easily be calculated and compared
to the prescribed displacements.

Green’s influence functions, which are used as fundamental solutions in
the boundary-element method, are derived for a linearly distributed load
acting on part of a layered half-plane on a line that is inclined from the
horizontal.

The calculation of the dynamic-stiffness matrix of the free field does not
require the Green’s functions for the surface tractions.

If the dynamic-stiffness matrix of the soil with excavation (ground) is calcu-
lated as the difference between that of the free field and that of the excavated
part, the behavior of the latter, being a bounded domain, has to be examined
in detail. At the natural frequencies of the undamped excavated part built in
along the structure-soil interface, the spring coefficients associated with the
dynamic-stiffness matrices of the excavated part and of the free field will
become infinite. In the vicinity of these frequencies, the dynamic-stiffness
matrix of the soil with excavation will thus follow as the difference of two
large numbers. A consistent discretization must therefore be used. In parti-
cular, the dynamic-stiffness matrix of the embedded part cannot be deter-
mined by the finite-element method close to these frequencies.

A parametric study is performed for the dynamic-stiffness matrix of the soil
with excavation (ground) for a rectangular foundation embedded in a half-
plane and in a layer built in at its base, varying the aspect ratio and the
damping of the soil. The two translational spring coefficients are not strongly
affected by embedment for the half-plane, while the increase of the corre-
sponding damping coefficients is approximately proportional to the embed-
ment, the increase in the horizontal direction being more marked. In the
rocking direction both the damping and spring coefficients increase with
embedment. Augmenting the embedment results in strong frequency depend-
ence of the dynamic-stiffness coefficients. In contrast to the elastic half-
plane, the built-in layer exhibits a cutoff frequency below which, for the
case of no damping, no radiation of energy occurs.
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PROBLEMS

7.1. For a structure (with or without an irregular soil region) embedded in a single
layer built in at its base, a vertical soil-structure interface can be selected (Fig.
P7-1a). Selecting only one node b at the free surface, calculate the stiffness coef-
ficient S, of the semi-infinite layer for the out-of-plane motion, assuming a linear
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Figure P7-1 Out-of-plane motion of layer built in at base. (a) Nomenclature;
(b) dynamic-stiffness coefficient.
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variation of the displacement. Decompose the nondimensionalized dynamic-
stiffness coefficient into k, and Ja,c,, where a, = wd/c,. Plot k, and ¢, for the
undamped and damped cases ({ = 0.05) as a function of a,.

Solution:

The amplitude »(z) corresponding to the wave number k is specified in Eq. 5.98.
Enforcing the boundary condition at the free surface (Eq. 5.100)

T, (z=0)=0
results in
v(z) = Agulexp (iktz) + exp (—ikt2)] = acos ktz

where (Eq. 5.95b)

242 — — k2
k%t C,: k
The other boundary condition at the fixed base z = d leads to the characteristic
equation

cosktd =0
which is satisfied for the discrete values of k,d,
hpd =G DF g

The complete solution for all k; equals
w(z) = Y a;cos k,tz
7

The prescribed displacement for x = 0 is formulated as N(z)v, with

N =1-%

Expanding N(z)v, into a Fourier series with terms cos k;¢z determines the coeffi-
cients a; as

2 (¢ z 2
a; = 7J; (1 —7) COSkjtZdZ’Ub —'(kjtT)zvb

The amplitudes of the shear stress 7,.(z) at x = 0 are determined from Eq. 5.112a
as
T,:(2) = —iG* 3 ak;cos kjtz
7

The concentrated nodal load Q, is calculated as
[ Ny, dr = —2iG* S, A
0 ” B J (kjtd)4 v

The dynamic-stiffness coefficient S, thus is equal to

k,d
% td)*

=. l
LTk

S, = —2iG* 2(
Substituting
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7.2

leads to

— * _ 4a’,’,"' 8
Sy =126 ?[\/1 (21—1)27:2(2;—1)37:3]

The static value K, equals 0.543G. Defining

S, = Kk, + ia,c,)
k, and ¢, are plotted versus a, in Fig. P7-1b. For the undamped case, the cutoff
frequency equals 7/2.

On a horizontal artificial boundary, which truncates a finite-element discretiza-
tion, local horizontal and vertical dashpots with coefficients pc, and pc, are
introduced, which completely absorb vertically incident SV- and P-waves (analo-
gous to Eq. 7.8). For an incident P-wave propagating with an angle of incidence
wp = 30° (measured from the horizontal) toward this boundary, determine the
ratio of the reflected and incident amplitudes Ap/Be of the P-wave and the ratio
Agy/Bp of the created SV-wave for Poisson’s ratio v = 0.33.

Solution:
Horizontal boundary at z = 0 (Egs. 5.130 and 5.132):
u = L(Ap + Bp) — m,t(Asy — Bsy)
w = —l.5(Ap — Bp) — m(Asy + Bsv)
1., = i2kl,sG(Ap — By) + ikm,(1 — 12)G(Asv + Bsy)
o, = ikl.(1 — 1)G(Ap + Bp) — i2km tG(Asy — Bsy)

Substituting
By =0
l, =cosyp = c,,—ka; = ZC,%
s = tan Yp
m, = cos Ysy = c,£
W
t = tan Ysy
and
Tyr = —IOPC,U
G, = —iwpc,w

into these equations leads to

(2 sin yp cOs Wsy -+ cos We)dp + (COSZ Wsy — sin? gy — sin YWsv)dsv
= (—cos Yy -+ 2 sin yp coS Wsv)Be
2
(—sinyp + cos? Ysy(1 — tan? Ysv))4e + (_2___1”_2‘;: W,Psvv sin sy — cos 'I/sv) Agy
= (—cos? Ysy(l — tan? Wsy) — sin Ye)Be
For sin y» = 0.5, this results in
Asv bt 0.117BP

Ap = —0.196B8;
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7.3. The dynamic-stiffness coefficients of a damped system are straightforwardly cal-

culated from those of the elastic system using the correspondence principle. The
Lamé constants A + 2G and G are replaced by their corresponding complex
values (Eq. 5.87). If an analytical expression exists for the dynamic-stiffness
coefficients, this is extremely easy to perform. In other cases, the calculation has
to be repeated from the start, using the complex values. The question arises
whether it is possible to approximate the stiffness coefficients of the damped
system using those of the undamped system (at the same frequency or at neighbor-
ing frequencies) which are available as tabulated values or as curves. (In passing,
it is worth mentioning that a rigorous procedure exists, which evaluates an
infinite integral over a,. The undamped solution thus has to be known over a
large range and has to decay rapidly with increasing a,.)

One specific dynamic-stiffness coefficient S(a,) is addressed, which can be
decomposed for the undamped unbounded domain as follows:

S(a,) = Klk(a,) + ia,c(a,)]
where K is the static value, k and ¢ denote the spring and damping coefficients,

and a, is equal to the dimensionless frequency. For a damped system with a
damping ratio {, a subscript { is added.
Si(a,) = Klki(a,) + iacla,)]
Applying the correspondence principle to the expression of the undamped case
results in
S(a¥) = K(1 + 2{i)lk(a¥) + iatc(a¥)] [= Si(a,)]
where
a¥ = Y
1+ 20i
The damping ratio thus affects the dynamic-stiffness coefficient in three ways.
First, the static-stiffness coefficient used to nondimensionalize the expression is
multiplied by (1 + 2{7). Second, a* is substituted for a, and third, k(a,) and c(a,)
are replaced by their damped (complex) counterparts k(a%*) and c(a¥). The fol-
lowing three possibilities to approximate k.(a,) and c.(a,) are discussed.
(a) The unbounded domain is treated as in the case of a finite body; that is, only
the factor (1 + 2{7) is considered.
Si(a,) = K(1 + 2{d)lk(a,) + ia,c(a,)]
This results in
ke(a,) = k(a,) — 2{a,c(a,)

cla,) = cla,) + 2a£k(ao)

() The damped values k(a*) and c(a¥*) are set equal to their undamped (real)
values k(a,) and c(a,), respectively. With a* ~ aq,(1 — {i), this leads to

SC(ao) = K(l + 2(1)[](([10) + iao(l - Ci)c(aa)]
or
kC(ao) = k(ao) - {aoc(aa)

cdlas) = c(a,) + 2;%1«(%)
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(c) The damped values k(a¥) and c(a?) are calculated using a Taylor expansion

at a,. For k(a¥), this leads to
k(a%) = k(a,) + k(a,).s(a% — a,)

With a* — a, ~ —i{a,,

k(a%) = k(a,) — i{a.k(a,).a,
results. Analogously,

c(a¥) = cla,) — i§a,c(a,).a,
Substituting leads to

Sela,) = K(1 + 2{lk(a,) — ilak(a,).a,

+ia (1 — §iXe(a,) — ifa,c(a,).q)

or
ke(a,) = k(a,) — La,cla,) + a¥fc(a,).a,

@) = cla) + 25-ka) = (k@)

Generally, because no analytical expression exists, the derivatives are deter-
mined by using a numerical-difference formula, for example, that based on
the central-difference equation. For the conical shear beam used to determine
approximately the dynamic-stiffness coefficient for twisting (Problem 5.6),
calculate for the three methods k(a,) and c(a,), starting from the solution
k(a,) and c(a,) for { = 0.20. Compare the results in a plot with the exact

solution (0 < a, < 6).

tion.

Results:
The comparison is shown in Fig. P7-3. Method (b) results in the best approxima-
'}
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Figure P7-3 Approximate twisting dynamic-stiffness coefficient of damped

conical shear beam.
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For the infinite Tod with exponentially varying area discussed in Section 5.1,
calculate for the three methods developed in Problem 7.3 k((a,) and c,(a,), start-
ing from the solution k(a,) and c(a,) for { = 0.20. Compare the results in a
plot with the exact solution (0.05 < a, <35, Fig. 5-6).

Results:

As the derivative of the spring and damping coefficient is discontinuous at the
cutoff frequency a, = 0.5, method (c) leads to unreliable results in the vicinity
of this frequency. The comparison is shown in Fig. P7-4.

For a more restrictive class of sites than dealt with in this chapter, other innova-
tive procedures exist for calculating the dynamic-stiffness coefficients. For in-
stance, for a horizontally stratified layer built in at its base, the dynamic-stiffness
coefficients associated with a vertical structure-soil interface extending over the
entire depth (two-dimensional problem) can be determined by using the so-called
cloning algorithm, which is based completely on the finite-element method.
This formulation captures the essential notion of infinity by stating that adding
a finite part to an infinite quantity does not change its value. The fundamental
idea of cloning is illustrated in Fig. P7-5a for the semi-infinite soil taking the
embedment into account. Adding the bounded cell of finite elements to the
semi-infinite domain with the characteristic length /, results in a similar semi-
infinite domain with length /.. The concept can be applied to their dynamic-
stiffness matrices by assembling the known dynamic-stiffness matrix of the cell
and the unknown matrix of the unbounded soil referenced by the length /,,
which results in the unknown dynamic-stiffness matrix of the unbounded soil
with length /,. As a relationship for the dynamic-stiffness matrices referenced
by different lengths exists, the cloning algorithm leads to an expression for the
dynamic-stiffness matrix of the unbounded soil as a function of that of the cell.

To discuss the fundamental features of the cloning algorithm, the simple
one-dimensional rod with exponentially increasing cross-sectional area is used
by way of illustration (Fig. P7-5b). This example is also selected in Section 5.1.

a) le

Figure P7-5 Cloning algorithm (after Ref. [13]). (a) Fundamental concept;
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The area A(z) is specified as

z

A(z) = A, exp (—f—>

where A, is the area at the cross section at z = 0 and fis a specified parameter
which can be interpreted as a length. The dynamic-stiffness coefficient .S of the
unbounded rod at the end of the rod at z = 0 is to be determined for a specific
frequency .

For a cross section at the location z, the dynamic-stiffness coefficient of the
infinite rod is formulated as

_EAQ);

where § is the dimensionless dynamic-stiffness coefficient, independent of z,
and E denotes the modulus of elasticity. Specifically, for the two sections denoted
with subscripts 7 and e, as shown in Fig. P7-5b, we have

S; = E;—"S_ and . = EAf,,e“S—
with & = //f and e denoting the exponential function.
b)
i F 1 Ap
wi
l
I
\ !
l
|
+—e ) Ag exp (L/f)
I We
|
I
|

v
z
Figure P7-5 (Continued) (b) rod with exponentially increasing area.

The cell bounded by the interior section i and the exterior section e consists
of one finite element. Its dynamic-stiffness matrix [S] is nondimensionalized as

EA,
f

For linear shape functions of the amplitude of the axial displacement,

[s1=

(D]

w(z) =(1 - %)w, + %w,
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er—1 1 —1
(D} ="z [—1 1]

2/(1 —e* il —e* 2/l —e* o
1+7( o +1) o _F( o +e>
M 2/1 | 21
J— ea — ea « : e 2 —_ eﬂ "
5 4= +e): e+a( x +e) _
results, where the dimensionless frequency is defined as
A
~E[p

The mass density is denoted as p.
The actual cloning algorithm proceeds as follows. Formulating the
dynamic-equilibrium equation at section e results in
Seue + Seeue + Sﬂ‘ui =0

The elements of [S] and [ D] are denoted with subscripts / and e. Analogously for
the interior boundary

Sy = Suu; + S,
Eliminating u, leads to
§2 — (D; — D..e)S — e~*(DyD,. — D}) =0
The solution of this quadratic equ'fltion is
S = 4Dy — D..e* + A/(Dyy + D..e™)* — 4D%e™*]

or

s=£[1+ ZaE(% — 1) ,v/1 = 4a? + 4a3(B — D]

1 —e® 2
B —< o ) e
The positive sign in front of the square root is to be used. This can easily be
verified by considering the static case (a, = 0), where the negative sign would
resultin § = 0.

Introducing material damping, characterized by the constant hysteretic-
damping ratio { in the cloning algorithm, affects only the dynamic-stiffness
matrix of the finite-element cell. Its static stiffness is multiplied by (1 + 200).
Proceeding analogously, the dynamic-stiffness coefficient §, which is nondimen-
sionalized with the same (undamped) static-stiffness coefficient EA4,/f, follows.

The nondimensionalized dynamic-stiffness coefficient can be split up into
its real and imaginary parts as

with

S =k, +ia,c

To establish the accuracy of the cloning algorithm, plot k; and ¢, for the un-
damped case, as a function of a, for two different element lengths o0 = 0.2 and
0.5 (& = I/f). In addition, for a damping ratio { = 0.2, plot k, and ¢, versus
a, using & = 0.5.
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7.6.

Solution:

The plots are shown in Fig. P7-5c and d. Excellent agreement exists with the
analytical solution specified in Egs. 5.33 and 5.34 for { = 0 and in Eq. 5.53 for
the damped case, with the exception of the range of highest frequencies, for which
the wavelength starts to approach twice the length of the finite-element cell. In
particular, the cutoff frequency is well captured. The cloning algorithm can thus
determine a complex dynamic-stiffness coefficient, starting from the real dynamic-
stiffness matrix of the cell.

Another innovative method, called infinite substructuring, is briefly discussed. In
this procedure, the outer boundary of a discretized region of finite elements is
moved outward from the structure-soil interface by a recursive technique. A
certain connection with the cloning algorithm does exist. The application is again
limited to certaih special cases. For instance, the dynamic-stiffness coefficients
associated with the vertical structure-soil interface of a horizontally stratified
layer can be determined (Fig. P7-6a). The static case is addressed first.

A cell of finite elements is placed with the interior boundary (subscript 7)
coinciding with the structure-soil interface. The exterior boundary (subscript ¢)
is similar in shape to the interior one. The static-stiffness matrix of the cell is
partitioned as [S,], [S:.), [S., and [S..]. Another cell of finite elements with the
same proportions, but their dimensions increasing with distance by a factor 7,
is placed adjacent to the first (with its interior boundary coinciding with the
exterior boundary of the first cell). Its static-stiffness matrix is formulated as
yn-2[S], where n is equal to 2 for the two-dimensional and 3 for the three-dimen-
sional case. Assembling the two cells results in the following static-stiffness
matrix:

(S E [S:] i

[S.{[See] + 1Sl 7 20Se]
LopAS S
Eliminating the displacements at the intermediate nodes leads to the condensed
static-stiffness matrix [S1] after one step:

[1S1] = [Sul — [Si)(See] + " 20SuD) 'S4

[S L] = —y"—z[sle]([sul + ?"_Z[Su])_‘[sie] = [Sell]T

[SL] = "~ ¥S.] — P2 VIS A([Se] + ¥*2SuD 7 Skl
After j analogous steps, this leads to

[S4] = [S471] — [S47 130841 + @ =2r(SH DS e ]
and so on, where ¥ = 2/~!, The generalization to the dynamic case is not
straightforward, as, the dynamic-stiffness matrix of a cell is proportional to
(y*=%)* only if the characteristic length of the foundation used to define the
dimensionless frequency a, is independent of p. This is, for example, the case
for the built-in layer, for which its depth can be used to define a,. (The same
restriction also holds for the cloning algorithm as described in Problem 7.5).
If this applies, then a certain amount of damping can be included in the analysis

to avoid the fact that the reflected waves reach the structure-soil interface.
S]] is a good approximation of the dynamic-stiffness matrix. This infinite-
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Figure P7-6 Infinite substructuring. (a) Fundamental concept; (b) dynamic-
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7.7.

substructuring procedure is illustrated in Fig. P7-6a, where the third step to
calculate the dynamic-stiffness matrix of a stratified layer built in at its base is
explained. In this case y = 1.

Use the concept of infinite substructuring to calculate the dynamic-stiffness
coefficient of the undamped rod with exponentially increasing area discussed in
Section 5.1 and Problem 7.5. Employ cells of constant length / consisting of one
rod element. Plot the dimensionless dynamic-stiffness coefficient versus a,.
Investigate the influence of the number j of steps, of & = I/f (see Fig. P7-5b) and
of the fictitious damping ratio { which has to be introduced.

Solution:
For the jth step, the assembled dynamic-stiffness matrix is equal to
Sirt i S !
§171 1 8171 + exp (ja) Dy | exp (j@) Dy
| exp jw)D,.; | exp (jo)D,.
where
sit = Efesy

and so on. The results are plotted in Fig. P7-6b for & == 0.01, { = 0.01 and after
10000 steps. The analytical solution for the undamped case is also indicated.
This example is not well suited for infinite substructuring, as the length / of the
element has to be constant to be able to use the same stiffness matrix.

The dynamic-stiffiness coefficients of the soil are frequency dependent, those of
the rotational degrees of freedom to a larger extent than those of the transla-
tional ones (especially in the horizontal direction). Various approximations exist.
Besides using the frequency-independent coefficients of Eq. 3.65, a fictitious added
mass can be introduced to represent the dependence on frequency of the soil. For
a circular rigid basemat with radius g resting on the surface of an elastic half-
space with Poisson’s ratio v and mass density p, the following added mass Am
can be introduced for the horizontal direction:

Am = 0.095 2
m

where m denotes the mass of the basemat and / the mass ratio defined as
_ m2-—v)
M = T8pa3
For rocking, the nondimensional damping coefficient ¢, is introduced as a func-
tion of I, the ratio of the mass moments of inertia,
0.30
C¢ == ——
1+ 1
3 —v
8pa’
with I denoting the mass moment of inertia of the basemat. The added mass
moment of inertia Al is equal to

where
I=
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For a horizontal excitation with amplitude u, plot the relative displacement with
amplitude u of a rigid circular basemat with mass (; = 0.5) as a function of a,
using the following three methods: (a) with the frequency-dependent dynamic-
stiffness coefficients of Fig. 7-19 (analytical), (b) with the frequency-independent
values of Eq. 3.65a, and 3.65b without the added mass, and (c) with the added
mass. For a rocking excitation with amplitude @,, plot the relative rotation with
amplitude @ of a rigid circular basemat with mass moment of inertia (/ = 0.5)
as a function of a, using the following four methods: (a) with the frequency-
dependent dynamic-stiffness coefficients of Fig. 7-19 (analytical), (b) with the
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Figure P7-7 Amplification of rigid basemat with mass and mass moment of
inertia. (a) Horizontal; (b) rocking.
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7.8.

frequency-independent constant coefficients of Eq. 3.65c and 3.65d, (c) with the
spring coefficient of Eq. 3.65¢ and the damping coefficient specified above with-
out, and (d) with the added mass moment of inertia. Note that the damping
coefficients in Eq. 3.65b and 3.65d have a dimension.

Solution:
Horizontal (Fig. P7-7a):

ke tiae, |, _
[_1 T Ed T Am/m)ag]" = Uy

@) k.(a,), c.(a,), Am =0

M®) k, =1,c, = 0575, Am =0

© k,=1,c, = 0575 Am = 0.095—”_:’7

Rocking (Fig. P7-7b):

kg + la,c

—1 AL B a2l 2 =
[ + Ia + A1/1)a,§]qS b

(a) k¢(ao)’ Cdi(aa), AI =0

M) ky =1, cy =0.15, Al=0

0.3
¢k=1,c=———_, I=0
© ke ¢ 1+1A

Two rigid two-dimensional basemats with mass m and width 2b rest at a distance
d on the surface of a half-plane with a damping ratio { = 0.05 (Fig. P7-8a). This
system is excited by vertically incident seismic S-waves with an amplitude «J
(= vg) of the out-of-plane free-field displacement. Determine the harmonic
response of this coupled system, and compare it to that of one rigid base only
(i.e., neglecting the through-soil coupling effect). Introduce a dimensionless mass
ratio of the structure to the soil m = m/(pb?). Plot the ratio of the absolute
values of the total response | +*| (divided by |v, ) versus a, = wb/c, for dj2b = 1
and /= = 5. For this comparative study, model each basemat with only one
substrip subjected to a constant distributed load having an amplitude ¢,.

Solution:

The flexibility coefficient of the half-plane in the wave-number domain F,,(k)
is equal to the inverse of the stiffness coefficient S%, (Eq. 5.104)

F, (k) = (iktG*)™!

The out-of-plane displacement amplitudes »(x) arising from a loaded substrip
of width 25 with load amplitude g, is equal to (Eqg. 7.46)

v(x) = %(J ———flirzl tlgl cos kx dk) 4,
0

For k — 0, kt — w/c¥, so that sin kb/k2¢ thus converges to bc¥/w. For k — oo,
the integrand vanishes. The function v(x)/g, determines the flexibility-influence



368 Modeling of Soil  Chap. 7

a)
— d ,
1 \
2b 2b
l m X [————m
= = ’/:’—'_'> PR
v(x)
y
3
Ivti
ivgi
% b b)
é 20
3
& 1.5
=
&3 1.0
W
]
3
3 0.5 4
4
s
2 ° T T T T %
0] 05 10 15 20

DIMENSIONLESS FREQUENCY

Figure P7-8 Through-soil coupling of two strip foundations. (a) Nomenclature;
(b) amplification.

function g(x), which expresses the displacement amplitude under the two base-
mats for the two unit-load intensities.

Although, because of the symmetry of the problem, the two load intensities
will be equal, this property is not used when calculating the dynamic-stiffness
matrix. The functions L(x) and N(x) are piecewise constant of unit value. Inte-
grating g(x) along the basemats numerically leads to the [G] matrix of order
2 X 2 (Eq. 7.33). The elements of the diagonal matrix [T] (Eq. 7.34) equal 2b.
The dynamic-stiffness matrix [Sy,] of the coupled system follows from Eq. 7.40
and can be expressed as

[Sbb]:nc([kn klz:l+ia0!:C11 Clz:‘)
kT, ki el ¢n

The spring coefficients k,, and k,, and damping coefficients ¢,; and c,, are
functions of a,, {, and d/b.

The equation of motion of the system with mass in the total displacement
amplitude +* for symmetric excitation equals

[—@2m + rG(kyy + K1y + ia(cy; + ¢y
=aGky1 + kqa +ia, (cyy + c12)v,
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or introducing m,

vt 1
v, 1 —aimfalkyy + kyp + ia(eqn + c12)]

The corresponding equation for the system with one rigid base follows from
d — co. The amplification | v*|/| v, | is plotted for s = 5 in Fig. P7-8b. Although
the two basemats are adjacent to each other, the through-soil coupling effects
are small.

Calculate for relaxed contact the vertical dynamic-stiffness coefficient S, of a
circular basemat of radius « resting on the surface of an undamped elastic half-
space having Poisson’s ratio = 0.33. Use only one subdisk with a constant ver-
tical load amplitude r,, which will lead to a very crude approximation. Plot the
real and imaginary parts of the influence function w as a function of rla for
various a,. Plot the dimensionless spring and damping coefficients &, and ¢,
versus a, = walc, [S; = K, (k. + ia,c.)).

Solution:

For relaxed contact F,,(k) is disregarded in Eq. 7.57. The vertical-flexibility
coefficient F,,(k) follows from the inversion of the stiffness matrix of order
2 X 2 specified in Eq. 5.135, and not as the inverse of the corresponding stiffness
coefficient on the diagonal.

_ 1 —is(l +1%)
Folk) =56 T =st)? T dst

The displacement amplitude w(r) arising from the one subdisk equals (Eq. 7.57)
W) = a [~ Tk Fn (I Gkr) dk |, = 8001,

This Green’s function is plotted in Fig. P7-9a.
The two functions L(r) and N(r) are both constant and equal to 1. The
flexibility coefficient G and T follow from Eqs. 7.33 and 7.34 as

G = [ 2mrg(r) dr
0
T = na?
The dynamic-stifiness matrix S, (Eq. 7.40) is thus equal to
na*

S, = —g
ZI rg(r)dr
[i]

The static value K, = 1.82nGa is used to nondimensionalize S.. In the plot of
k, and ¢, (Fig. P7-9b), the strong oscillations are visible that do not exist for a
rigid basemat with the correct vertical load amplitudes (Fig. 7-19).

Calculate for relaxed contact the vertical dynamic-influence function w(r) of an
annular ring of radius e with the load amplitude R, and which rests on the surface
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Figure P7-9 Rigid circular basemat with constant vertical load on half-space.
(a) Influence function; (b) dynamic-stiffness coefficient.

of an undamped elastic half-space with Poisson’s ratio = 0.33 (Fig. P7-10). Plot
for the static case w versus r/a and note that the displacement amplitude is infinite
under the ring load.

Solution:

The vertical load acting on the annular ring is assumed to have a constant ampli-
tude r,. This loading condition will occur when the loading on a circle with radius
a is subtracted from that with a + da (Fig. P7-10a). Performing the correspond-
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Figure P7-10 Annular ring load. (a) Nomenclature; (b) influence function.

ing operation on Eq. 7.57 results in the influence coefficient for a loaded annular
ring: .

w(r) = [(a + da) j;o T (k(a + da))F,,(k)J,(kr) dk
—a” Jl(ka)FW(k)J,,(kr)dk:I r
k=0

The total loading acting on the annular ring equals 2radar,, which is equal to
2naR,, where R, is the annular ring-load amplitude. This leads to

wr) = [ f " (a + da)Jy(k(a + da)) — aJy(ka)
k

-0 da W), (kr) dk} R,

or
W) = [ [ ladikallFun (), (kr) di | R,
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Comparing this expression with Eq. 7.57, it follows that the influence function
for a ring load is equal to the derivative with respect to the radius of the influence
function of a disk. (This applies to all degrees of freedom.) Using Eq. 7.52a results
in

w(r) = [a j::o kJ(ka)F,,(k)J (kr) dk} R,

For a, = 0, w is plotted versus r/a in Fig. P7-10b.

The procedure of Section 7.2, which discretizes the structure-soil interface into
subdisks, allows the dynamic-stiffness coefficients of surface foundations of
arbitrary geometry to be calculated. An example of a general case is discussed
in Section 7.7. For special geometries, more efficient methods exist, which lead
to identical results. For instance, for the circular basemat discussed in Section
7.4, annular rings with a finite width can be selected.

Calculate for relaxed contact the vertical dynamic-stifiness coefficient of
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Figure P7-11 Discretization of circular basemat with annular rings. (a) Vertical
dynamic-stiffness coefficient of annular ring with finite width; (b) vertical
dynamic-stiffness coefficient of circular basemat.
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7.12.

a circular rigid basemat resting on the surface of a half-space using eight annular
rings (Fig. P7-10a). Assume the load amplitude R, to be constant over the (finite)
width of each annular ring. Use the same parameters as chosen for the results
shown in Fig. 7-19. Also plot the spring and damping coefficients of the non-
dimensionalized dynamic-stiffness coefficient S, for Aa/a = 0.1 and 0.2, whereby
Aa denotes the finite width of the annular ring with the average radius a.

Results:

For the annular rings with Aa/a = 0.1 and Ag/a = 0.2, the static values X, are
equal to 1.6187Ga and 1.849nGa, respectively. The corresponding dynamic-
stiffness coefficients are plotted in Fig. P7-11a. Note the strong dependency on
frequency.

Using eight annular rings, the dynamic-stiffness coefficient of the circular
basemat is calculated. The spring and damping coefficients are plotted in Fig.
P7-11b as a function of a,. The curves are quite smooth.

Calculate the flexibility-influence function »(r) for the disk of radius Aaq loaded
torsionally as shown in Fig. P7-12. The load amplitude increases linearly from
the center to the value g, at Aa.

N <3

Figure P7-12 Subdisk loaded torsionally.

Solution:

Only the zeroth antimetric Fourier term is excited. With g(r) = g,7/Aa, the ampli-
tude of the load in the k-domain follows from Eq. 7.49a as

Aa 2z Aa
__ % — 9 2
q(k) kA J: . rJ,(kr),r J;=o dl dr TAa J;o r2J (kr),, dr

Integrating by parts and using Eq. 7.52b lead to

k
The (only) displacement amplitude in the k-domain results as
’l)(k) = Fvv(k)q(k)

qlk) = 9eAa [k Ao — 2,k A |
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The inverse transformation follows from Eq. 7.49b as

o(r) = j;o T (kr), (k) dk
Using Eq. 7.53,

o(r) = —I—Aa[f (—J,(k Aa) + Jl(k Aa))F,, (k)J,(kr) dk:lq,
k=0

results.

Calculate the flexibility-influence function w(r, 8) for the disk of radius Aa loaded
by a rocking moment for relaxed contact as shown in Fig. P7-13. The load ampli-
tude increases linearly with x from the center to the value r, at Aa.

Figure P7-13 Subdisk loaded by a rocking moment.

Solution:

The first symmetric Fourier term is excited. With r,r cos #/Aa, the amplitude of
the load in the k-domain results from Eq. 7.49a as

Aa

2n Aa
r, 2 —_t 2
wha | . r2J(kr) f=o cos2 8 d0 dr A J:=0r J(kr) dr

rAa

rik) = —

[ 'k Aa) — J1 k Aa)]

For relaxed contact, the displacement amplitude in the k-domain is equal to
w(k) = F,,(k)r(k). The inverse transformation follows from Eq. 7.49b as

w(r, 0) = cosGAa[ f (k ik Aa) — Ik Aa)) F, (k) J (kr) dk:|

In Problem 7.1 the dynamic-stiffness coefficient for the out-of-plane motion is
derived, assuming a linear variation of the displacement with the depth of the
homogeneous layer fixed at its base (Fig. P7-1). Assuming a source load that
varies linearly from the free surface to zero at the base acting on a vertical line
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7.15.

at an eccentricity e equal to the depth d, calculate the dynamic-stiffness coeffi-
cient S, of the undamped case for a, = /4 and &, using the indirect boundary-
element method. Compare with the analytical value specified in Problem 7.1.
Also place the source line adjacent to the structure-soil interface and repeat the
calculation.

Solution:

The procedure is analogous to that described in Section 7.5.2 for the staiic case.
Analogous to Problem 7.1 the amplitude of the displacement «(x, z) is specified
as
v(x, 2) = 3, a; cos k;tz exp (—ik;x)
7

and the amplitude of the shear stress 7,.(x, 2),
T,.(x, 2) = —Gi 3, ajk; cos kjtz exp (—ik;x)
7

Formulating the boundary condition
Tyx(—e, 2) = —4q(2) = —}L(2)q
with

z

and expanding the load in a Fourier series leads to

_exp (—ikse)

= Gk, tdyz
The coefficients g,(z) and g,(z) follow-straightforwardly setting x = 0 in the
equations for v and 17,,. With

N(z)=1—%

The G- and T-coefficients of Egs. 7.94 and 7.95 follow, which results in (Eq. 7.101)
exp (—ik,e))?
[;’ (k td)* ]
3 exp (—2ik,e)
¥ (kjtd)s/1 — a3/(ktd)?

S, =2G

where
kd="n j=1,2,...
and
k e kjtd
T d YT~ (aJkpd)E

Decomposing S, as in Problem 7.1, the spring and damping coefficients k, and
¢, follow. For a, = m/4, k, = 0.824 (= 95% of exact value) for e/d = 1 and
k, = 0.844 (= 97‘7)fore/d Oresult. Fora, = 7, k, = 0.583 x 1074 (< 1%),
¢, = 0.524 (=100%;) for e/d =1 and k, = '0.0175 (= 45%), ¢, =0.539 (=
103%) for e/d = 0.

As described at the end of Section 7.1.3, a local boundary located on the surface
of an embedded cyclinder with a vertical axis can be derived through the examina-
tion of an infinitesimally thin independent layer extending to infinity. The salient
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features can be discussed, calculating the dynamic-stiffness coefficient S,, relating
the amplitude of the radial displacement u, at r = radius q of the cylinder to that
of an applied load 27zap, where p = —a,(r = a) is a constant in the circumferen-
tial direction @ (Fig. P7-15a). Plot the spring and damping coefficients k, and c,
as a function of a suitably chosen dimensionless frequency a, for v = 0.3.

Solution:

Only a radial displacement with an amplitude u can arise. The radial coordinate
r is the only independent variable. The stress-displacement relationship follows
from Eq. 5.152 a and b and Hooke’s law for plain strain as

a1 —wE v
T +na —2v)(1 —vr

1 —vE ( + )
TTFWa -2 1~—v
Substituting in Eq. 5.151a leads to

g,

—|— u,,)

u,,, + ru,, + ( 32 — l)u =0
with g, defined as
_a+»nd -2y
T-we P4

This differential equation is the Bessel equation of order 1 with the parameter
a,/a (Eq. 5.172). The solution is specified analogously as in Eq. 5.173.

u(r) = cyJy (a—;r) + ¢, Y, (ﬁa"-r)
As the origin (» = 0) is not included in the problem, ¢, 7= 0 in contrast to the

derivation in Section 5.5.2. Introducing so-called first-order Hankel functions of
the first and second kind defined as

Hﬁ”(-%"r) = Jl(%r) + in(%r)
H(,ﬂ(ﬁaer) =Jl(%r> —~ in(%r>

u(r) = legn(% r) + dzH‘lz)(%" r)

leads to

The radiation condition demands that only outgoing waves arise, propagating
in the positive r-direction. For Iarge r

(&)~ Y2 o [~ ¥)]

0 (§r) = o[ (3]

Selecting the time factor as exp (+-iwt), the wave propagating in the positive
r-direction is characterized by a negative imaginary part of the exponent involv-
ing r. Only the term with H{® is thus kept (d; = 0). This can also be verified
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using Sommerfeld’s radiation condition for two dimensions (see also Eq. 7.27)

lim MT(u,, 4 i%u) =0

The term with H{" does not satisfy this equation. For a prescribed displacement
amplitude &, = u(r = a)

uo
= Hp(a,)
The solution thus equals
H® (& r)
u(r) — ____a_.
H{®(a,)

Substituting into the stress-displacement relationship yields o,.(r = a). Defining
the dynamic-stiffness coefficient .S,

_ 2ma0,(r = a)

S, =
u

0

leads to

S,

21 —WE [1—2 H,‘,z)(a,,)]
TTFEwad = 1—-v ~ “HD(@Q,)

H ¥ is the zeroth-order Hankel function of the second kind. S, is split up as

S, = 12_1E_v(kr + iaocr)
2nE/(1 + v) represents the static-stiffness coefficient. k, and ¢, are plotted versus
a, in Fig. P7-15b.
This problem addresses the zeroth symmetric Fourier term in the circum-
ferential direction. Other Fourier terms lead analogously to the stiffness coeffi-
cients of torsional, vertical, and horizontal degrees of freedom.



ALTERNATIVE
FORMULATION
OF EQUATION

OF MOTION

8.1 DIRECT ANALYSIS OF TOTAL STRUCTURE-SOIL SYSTEM

The basic equation of motion is derived directly by the substructure method in
Section 3.1. The same equation is again obtained below, starting from that of
the direct solution of the total structure-soil system. This allows the direct
method to be explained and its relationships to the procedure of the substructure
analysis to be established. In particular, it will become evident that the two
methods are equivalent, that is, that if they are implemented consistently,
identical results will be obtained.

8.1.1 Equation of Motion in Time Domain

The total structure-soil system is shown in Fig. 8-1. The single structure
with a flexible base (basemat and wall) is embedded in soil. In the direct method,
the part of the soil included in the model is also discretized (e.g., with finite
elements). The soil domain with some material damping is limited by a fictitious
exterior boundary, which is placed so far away from the structure that during
the total earthquake excitation, the waves generated along the structure-soil
interface do not reach it. Subscripts are used to identify the nodes of the dis-
cretized model. The nodes along the structure-soil interface are denoted by b
(for base), the remaining nodes of the structure by s. The subscripts i and r
indicate the nodes of the soil in the interior region and on the exterior boundary,
respectively. To differentiate between the various subsystems, superscripts are
used when necessary. The letter s denotes the structure (when used with a prop-
erty matrix), g the ground (soil with excavation), f the free field (continuous

369
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Figure 8-1 Total structure-soil system.

soil without excavation), and e the excavated soil. The reference soil systems,
which are the same as those introduced in Section 3.1, are shown in Fig. 3-2.

Assembling the property matrices of the structure and of the soil, the
equations of motion in the time domain of the total system for earthquake exci-
tation can be formulated (analogous to Eq. 2.1).

M ML : {7}

(M)} (M3s] + (M) | M) 8

LM, MM, ||

! LML MR
ICER R (o {7}

[Cb.v] i [Cb'b] —l_ [C_gb E [C_bl] i {f;’} (8.1)

I (A IR (AR (A 3

L L [C.] | IC 1)
(K. K. () (O
L | DKed | K]+ [Kg] | (Kl | i}l |0}

LR IR IRD ) T
! VK IR (R
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The dynamic-equilibrium equations in the nodes of the exterior boundary of the
soil (subscript r) are also specified. The matrices [M], [C], and [K] represent
the mass, the damping, and the static stiffness, respectively. A bar is used to
indicate the property matrices of the soil corresponding to the discretization,
including the internal nodes i. The property matrices corresponding to the
degrees of freedom of the nodes b along the structure—soil interface are added,
(e.g., [K%] + [K&)). The vector {r} represents the displacement; the superscript
¢ indicates that the motion is total. The vector {R} denotes the reaction forces.

For this direct-solution procedure to be valid, the exterior boundary of
the soil must be placed sufficiently far away from the structure, where the free-
field motion {r/} applies (it thus also has to be calculated in the direct-solution
procedure, using, for example, the methods presented in Chapter 6).

{7y ={#}
{ri}={t (8.2)
{ri} =1{rf}
Deleting the equilibrium equations in the exterior nodes » (which are used only
to calculate the reaction forces {R,}), substituting Eq. 8.2 and rearranging Eq. 8.1,

the equations of motion in the time domain of the total system are modified as
follows.

M1 Ml Fy) iCd [Cal "
[M,.) | [M3,] + (18] | (M, 337 + | [Col | [Ca] + (€81 | (G |45}
I P B AL I (A I (MR
[Kli  [Kal tr 0}
+ | [Ka] | Ko + [RED | 1K ({0} = — 0}
LRl IR (M, )71} + [C Y + K}
(8.3

The effective load is described by the free-field motion of the external boundary
and acts because of the band structure of the cross-coupling matrices [X,,], and
so on, only on those interior nodes which are adjacent to the exterior boundary.

8.1.2 Equation of Motion in Frequency Domain

Using the complex-response method (Section 2.6), the equations of motion
(Eq. 8.3) in the frequency domain are as follows:

[Su] i [Ssb] i {u:} {0}
[S,.] | 15 -+ [S8] | [Sud |f}p = —1 (0} (8.4)
i [S_ ] i [5 ] \{ut} [S_ o Jul}

with the dynamic-stiffness matrix [S] (Eq. 2.10)
[S1= [K] + iw[C] — w’[M] (8.5
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and with {u}, the vector of displacement amplitudes, and {r} forming a Fourier
transform pair (analogous to Eq. 2.17).

{u} = j: {r} exp (—ioor) dt (8.62)

= 217: f_w {4} exp (iw?) do (8.6b)

Equations 8.5 and 8.6 apply to all submatrices and vectors, respectively, with the
various subscripts and superscripts as specified in Eq. 8.4.

Eliminating all degrees of freedom of the interior nodes of the soil i
(dynamic condensation) from Eq. 8.4 results in

(Sl [Sel {ui} {0}
s st el = sl &7
where
[S%:] = [Sgb] - [gbl][S_ii]_l[§lb] (8.82)
[Ss.] = _[gbi][gii]_l[gir] (8-8b)

It should be remembered that eliminating variables in the frequency domain
(and thus for harmonic excitation) is just as straightforward as in the static case.

Equation 8.7 represents a possible formulation of the soil-structure
interaction analysis, expressed in the total motion. It is, however, not convenient
to use, as the load vector (acting at the nodes b at the base) is expressed as the
product of the cross-coupling dynamic-stiffness matrix [S,,], and the vector of
the free-field motion at the fictitious exterior boundary {«f}. The matrix [S,,]
is difficult to establish. The coefficient matrix on the left-hand side is quite
familiar. [Sg,] represents the dynamic-stiffness matrix of the ground (soil with
excavation, Fig. 3-3). Methods of calculating [S%] are discussed in depth in
Chapter 7. [S,,], [S;), and [S;] are the dynamic-stiffness submatrices of the
structure (Chapter 4). For (frequency-independent) hysteretic damping in the
structure, the following applies (Eq. 2.15):

[S:.r] = [K.u](l + 2(’) - wz[Ms:] (8.93)
[S5] = [Kl(1 + 28) — w*[M,,) (8.9b)
[S5] = [Kpp)(1 + 2§i) — w*[M3,)] (8.9

The damping ratio { is assumed constant throughout the structure in the
following. This is not imperative. It does, however, allow the formulas to be
written more concisely.

The vector {u!} contains all dynamic degrees of freedom of the structure
which are not associated with nodes located on the structure-soil interface.
Besides displacement amplitudes, generalized displacements (modal amplitudes,
generalized coordinates) will also arise in {u} if introduced as described in
Sections 4.3.6 and 4.4. In this case, Eq. 8.9 does not apply. It is worth noting
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that [S§,] cannot be formulated as in Eq. 8.9, as the radiation damping term
cannot be written in that form ([S%] = [K&] -+ iw [CED.

Equation 8.8a represents an intermediate formal result and should not be
used actually to calculate [S%,]. As discussed in Section 7.1, based on a discretiza-
tion of a realistically bounded domain of soil with material damping using
for example, finite elements, only a very crude approximation for the dynamic-
stiffness matrix of the semi-infinite medium is obtained. This objection would
disappear if the effect of the soil region not modeled were implicitly included in
Eq. 8.1, using some kind of an absorbing boundary (dynamic-stifiness matrix).
This would also enable a nonlinear system to be calculated (in the time domain),
whereby that part of the soil not explicitly modeled (located on the exterior of
the fictitious boundary) has to behave linearly. Strong nonlinearities could arise
in the rest of the system, in particular in the structure. The Fourier transform
of the dynamic-stiffness matrix (in the frequency domain) of the unbounded soil
would result in the one applicable to the time domain. The convolution operator
would then appear in Eq. 8.1, and this would make it necessary to store and
process the complete time history of the displacements. The same also applies
if a reduced equation after eliminating the internal nodes in the soil is used,
for example, the equivalent in the time domain of the basic equation of motion
(Eq. 8.13) for a nonlinear structure. This procedure is discussed briefly in Section
8.5.

8.2 SUBSTRUCTURE ANALYSIS WITH FLEXIBLE BASE
8.2.1 Basic Equation of Motion in Total Displacements

The load vector of the equation of motion of the structure-soil system
(Eq. 8.7) can be reformulated as follows: In the dynamic system of the free field,
the motion {u/} acts on the same exterior boundary (Fig. 8-2) that is introduced

Figure 82 Dynamic-stiffness matrix and earthquake excitation referred to
different reference systems of soil.
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for the total structure—soil system (Fig. 8-1). The matrix and vector symbols are
deleted in this figure. As explained in Section 3.1.1, the free-field system can be
assembled from the ground and embedment systems, leading to

[T} = [S8) + [Shl (8.10)

By selecting the “structure” to consist of the excavated part of the soil only,
Eq. 8.7 can be formulated as a special case. With [S,,] = [0], [S},] = [St,], and

{u} = {ul},

([S5s] + [SED{uf} = —[S,Hul} (8.11)
results. With Eq. 8.10, Eq. 8.11 is formulated as
[STXui} = —[S,){ul} (8.12)
Substituting Eq. 8.12 in Eq. 8.7 leads to
[Ss:] : [S.vb] ]{{u:}} { {0} } 8 1
! = 13
l:[Sb:] 1 [S5] + [S8) {u3} NAIS: ( )

This represents the basic equation of motion formulated in total displacement
amplitudes, also derived (and discussed in depth) in Section 3.1.1 (Eq. 3.9).
Instead of using the free field, the ground system (soil accounting for the
excavation) could be used as a refesence system for the earthquake excitation.
The same free-field excitation {uf} acts at the exterior boundary shown in
Fig. 8-2. The corresponding equations of motion can be established from Eq. 8.7,
deleting all structural matrices. With [S,,] = [S5,] = [0] and {u}} = {ug},

[SE{ug} = —[S,1{ul} (8.14)

results. This equation expresses that the interaction forces [S§{uf} + [S,,H{ul}
of the substructure of the soil with excavation along the line having nodes b
(where the motion is {uf}) are zero. The term arising from the support motion
[S,.J{uf} is clearly apparent and must be taken into account.
Substituting Eq. 8.12 in Eq. 8.14 leads to the following identity for the
forces:
(S8 H{ug} = [SL:)uf} (8.15)

which is identical to Eq. 3.8. This equation could be used to determine the
motion of the soil modified by the excavation {uf} (the so-called scattered-wave
motion). Substituting Eq. 8.15 in Eq. 8.13 leads to the same equation as Eq. 3.5:

[[s,,]g sl ] {{uz}} :{ (0} } 616
[Sy] ¢ [Shsl + [SEs {us} NAUS

There is, however, no advantage in using this equation, as {u§} would have to be
calculated, which is unnecessary.

It is obvious that the direct method of analyzing soil-structure interaction
leads to the same basic equation of motion (Eq. 8.13) as the derivation using
the substructure method (Eq. 3.9). The two methods, the direct method, which
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in the frequency domain uses Eq. 8.4, and the substructure procedure based on
Eq. 8.13 (or some analogous formulation, as Eq. 8.16), will thus lead to identical
results. This, however, is the case only if both methods are applied consistently.
For instance, [S%] and the dynamic-stiffness matrices of the soil in Eq. 8.4
must be based on the same assumptions, the influence of the embedment has
to be properly taken into account, and—very important—the spatial variation
of the free-field motion {uf}, {u/} must correspond to the same wave pattern and
control point.

8.2.2 Base Response Motion Relative to Free Field

The free-field motion (superscript f of reference subsystem) should be used
to characterize the earthquake excitation, especially for a system with a flexible
base. It can be advantageous to define the response motion of the base of the
total dynamic system relative to that of the corresponding free field. The motion
of those parts of the structure not lying on the base (for which the free-field
motion is not defined) is not modified. No superscript is used to denote relative
motions. Substituting

{up} = {uf} + {us} (8.17)

in Eq. 8.13, and using Eq. 8.10 results in
[Su] i [S.vb] :|{{u§}} — _l: [Ssb] :| 7 8 18
[[sb,l FCARSCAINCS; s3] — 155" @19

In this formulation, where the additional motion of the base {u,} arising from
placing the structure is determined, the load vector depends on the property
matrices of the structure and of the excavated soil region and on the free-field
motion along the base. Because of the band structure of [S,,], only those nodes
of the structure are loaded which are directly coupled with the base (and of
course all base nodes). The lower submatrix on the diagonal [S5,] -+ [S%] can
also b¢ written as [S3;] — [S5,) 4 [Sf,]. The first two submatrices are the same
as thgse appearing in the corresponding subvector of the loads. This formulation
descfitges the equations of motion of a discretized system (consisting of the
structure and, in the embedded part, of the difference of the structure and the
soil) supported on a generalized spring characterized by [Sf,]. The loads are
equal to the negative reaction forces resulting when {u{} is enforced along the
base of the reduced system without the generalized spring and when constraining
the other nodes in the structure from moving. This is illustrated in Fig. 8-3,
which should be compared with Fig. 3-4 for the equation of motion formulated
with ('} in all nodes. The subscripts as well as the vector and matrix symbols
have been deleted in these figures.

If the relative motion {u,} were defined with respect to {u§} instead of {uf}
as

{14} = {uf} + {u,} (8.19)
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Figure 8-3 Physical interpretation of basic equation of motion with relative
displacements of base.

the equivalent of Eq. 8.18 (which follows from Eq. 8.16) would read

[Sel i [Sa] } {{u',}} _ [[Sﬂ -
[[Sbs] E [Sib] + [Sg,, {u,,} [S { f} ( . )

Although the load vector is formally simpler, this formulation should not be
used, as it requires {u§} to be calculated. [In all formulations developed below,
which are based on Eq. 8.18, {u$} instead of {u]} could be introduced. The cor-
responding formulas are, however, not specified in this section dealing with a
flexible base (see Problem 8.3).]

Further formulations can be derived, starting with Eqs. 8.13and 8.18. They
are summarized in Fig. 8-5. One of the goals is to transform the load vector to
the familiar form “mass of the structure times earthquake acceleration,” which is
well known from structural dynamics. This is also achieved in Section 3.2,
where the total motion is split up into those of kinematic and inertial interactions.
All formulations will lead to identical results (apart from numerical inaccuracies).
Some of the more important equations are developed below.

8.2.3 Quasi-static Transmission of Free-Field Input Motion

In the first group, the so-called quasi-static motions are introduced. These
are defined as the motions that arise when the known free-field motions at the
base {#{} are applied statically either to the structure or to the complete structure—
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soil system. The unknown (dynamic) motions are then defined relative to these
quasi-static motions. Together they add up to the total motions.

In connection with Eq. 8.13 (total motion), the quasi-static displacement
amplitudes {1} can be expressed as a function of {«{}, imposing {u{} statically on
the structure only. The superscript s is used here to denote the static motion.
The static part of the equilibrium equations of nodes s equals (Eq. 8.13)

K, Jus} + [KoJuf} = {0} (8.21)
or
{u:} = _[K:s]_l[K.rb]{u{} = [T:b]{u{} (822)

The matrix [T,,] represents the quasi-static transformation. Each column of
[T.,] can be visualized as the static displacements of the nodes s of the structure
when a unit displacement is imposed at a specific node 5. All other displace-
ments at the nodes b are zero, and no loads are applied at the nodes s. Although
the same transformation matrix [T,,] (Eq. 3.24) as in the kinematic interaction
part of the analysis (Section 3.2.1) appears, the two methods are not identical
for the general case, as {u}} == {uf}.

Defining the (dynamic-)displacement amplitudes {12} and {u3} relative to
these quasi-static displacements (superscript d indicates the dynamic motion) as

{ut} = [T Huf} + {(ud} (8.23a)
{u} = {uf} + {4t (8.23b)

substituting in Eq. 8.13, using Eqs. 8.9 and 8.22, and transferring all terms
associated with the free-field motions to the right-hand side results in

’:[ss:] § [S:b] jl{{u?}} _ wz':[Msb] + [Ms:][T:b]:I{uf}
[Ses) | [S3,] -+ [S&1 |{u} [M3) + Mo (Tl
[0] } ,

+ [[szbl — (1 + 28i)(K 3] + [K T ud}

(8.24)

The term w?{uf} represents the negative acceleration amplitude {i{} of the free-
field motion. The first term on the right-hand side can thus be interpreted as
the negative inertia loads calculated as the product of the mass of the structure
and the acceleration amplitude of the free-field motion imposed statically on the
structure. The term [K3,] + [K,,J[T.s] represents self-equilibrating loads which
act on the base and does not in general vanish.

The resulting total response is equal to the sum of those of the quasi-static
transmission and of the actual dynamic analysis. For the displacement ampli-
tudes (and the acceleration amplitudes), this superposition is expressed in Eq.
8.23,

An analogous relationship applies to the stress resultants. In particular,
the quasi-static transmission of the free-field motion will, in general, lead to
nonvanishing stress resultants in the structure, including the base.
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For the important case of a surface structure excited by vertically incident
body waves, this analysis, which introduces the dynamic motion relative to the
quasi-static transmission of the free-field excitation, is identical to the two-step
procedure of kinematic and inertial interactions ({sf} = {u]}, {t}} = {#2}). The
second term of the load vector vanishes for this special case.

This procedure described by Eqs. 8.23 and 8.24 is illustrated for the
structure shown in Fig. 8-1 in Fig. 8-4a. The inner part of the structure is omitted
for clarity. The undeformed structure is shown as a thin line, and the position
after the quasi-static transmission of the free-field base motion {uf} into the
structure as a dashed line. This position should be compared to that shown in
Fig. 8-3, where the nodes s of the structure are held fixed. The final position is
indicated as a solid line. The vector and matrix symbols are deleted in this
figure.

\W¥

\ Ub,

o=
N

Figure 8-4 Quasi-static transmission. (a) Free-field base motion; (b) base
response motion.

In connection with Eq. 8.18 (base motion relative to free field), the quasi-
static displacement amplitudes {#:} and {u§} of the complete system can be related
to {uf], which is imposed on the total system and not only on the structure.
Onmitting all dynamic terms in Eq. 8.18 leads to

[K..] | (K] wll [K.s] .
[[Kb:] LK + [K fb]} {{u,‘,}} N [[K Bl —[K ib]]{ub} (8.25)
which after solution can also be written as
ek — ety = [ [ ot (8.26)
{ui} (7]

Defining the (dynamic-)displacement amplitudes {¥?} and {uf} relative to the
quasi-static displacements as

{3} = [T.Juf} + {ud} (8.272)
{us} = [T, Huf} + {u3} (8.27b)
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and substituting in Eq. 8.18 leads to

|:[Ss.\'] E [Ss] ]{{uﬁ}}
[Ses] 1 [S5el + NARIT

LT IMIT] A+ [MTS] A+ (M) ,
= | (o AT + i — [M;,,J{"”} (629
— 1] et
2(—[K&IT,] + [K5s) + o(CEIT,] — [CoD
The stiffness term does not appear in the load vector, as (Eqs. 8.25 and 8.26)

[Kss]l' [K:b] jl [ —[K:b] :|
i T} = 8.2
[[K,,,] e + kel T L ke + (ks (8.29)

This is an advantage. As an approximation, the damping term can be neglected
on the right-hand side (which is equivalent to assuming constant hysteretic damp-
ing also for the soil), resulting in the familiar inertia-load vector “mass times
earthquake excitation.” In this formulation, the analysis of the soil-structure
interaction is actually performed in three steps. In the first, a dynamic analysis
of the free field is performed (this step is necessary for all procedures). The
resulting free-field motions are then applied statically at the base to the total
structure—soil system in the second step. In the third, a dynamic analysis of the
complete structure-soil system is performed to determine the relative motions
with respect to those of the second step.

8.2.4 Quasi-static Transmission of Base Response Motion

In the second group, quasi-static displacements are also introduced, but
they are defined differently, namely as the motions that arise when the unknown
response base motions (either total or relative to {uf}) are applied statically to
the structure. As the response base motions are unknown a priori, the quasi-
static displacements cannot be determined before the actual calculation as they
could in the first group. It will become apparent that this definition results in a
transformation of the dynamic-stiffness matrix of the total system.

In connection with Eq. 8.13 (total motion), the (dynamic-)displacement
amplitudes {#?} are defined as follows:

{w} = [T Mui} + {3} (8.30)

where [T,,] is specified in Eq. 8.22. Comparing this equation with Eq. 8.23, the
difference between the methods of the two groups becomes apparent. The
following transformation matrix can be established:

fd}] _ [ [T {{ug}}
{{ui}} [ [ } {3} (8.31)

Substituting Eq. 8.31 in Eq. 8.13 and premultiplying with the transposed
transformation matrix leads to
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[ [S..] ;
— ¥ (M,T + [T, [M,)]) |

— ¥ (M,;] + [MIT,) J {{ui}} _{ {0} }

[S5] + [SellT,] — @ T, (M) + IMIT,D + 58101 IS Ius}

(8.32)

The load vector is unchanged.

This formulation, defined by Eqgs. 8.31 and 8.32, is illustrated in Fig. 8-4b.
The dashed line indicates the deformed position of the structure after trans-
mitting quasi-statically the total base motion. The difference between this
method and that of the first group shown in Fig. 8-4a is apparent.

In connection with Eq. 8.18 (base motion relative to free field), the
following transformation is introduced:

{ui} = [Toplu} + {ud} (8.33)

The relative motion {,} is defined by Eq. 8.17.

Proceeding as above, the coeflicient matrix of the equations of motion is
the same as in Eq. 8.32, but with the unknown vectors {#¢} and {u,}. The load
vector equals

2 [M-'b] + [M::][T.rb] ] s [O] ‘ J P 034
A ir.ron + a0 | s — s+ a9

8.2.5 Transformation to Modal Amplitudes of Fixed-Base
Structure

The formulation of the second group, where the unknown base motion is
transmitted into the structure (Eqgs. 8.32 and 8.34), can be expanded to reduce
the number of degrees of freedom of the structure. It is well known that even for
quite complicated structures, the seismic response is governed by only a few
vibrational modes (see Chapter 4). As the dynamic-stiffness matrix of the soil
[S%,] is frequency dependent and the orthogonality condition does not apply to
the damping matrix, the structure-soil system does not possess vibrational
modes in the classical sense, as described in Chapter 2. A dynamic subsystem
(i.e., the structure on a fixed base) which thus does not involve [S§,], can, how-
ever, be used to define vibrational modes. This allows the concept of the sub-
structure-mode synthesis discussed in Section 4.4.3 to be applied. Setting
{u} = {0} (fixed-base structure) in Eq. 8.30, the only nonzero displacement
amplitudes of the structure are {u¢}. It is thus perfectly acceptable to formulate
{u%} as a linear combination of the first few vibrational modes of the structure
on a fixed base. The number of modes is selected smaller than the number of
degrees of freedom of the built-in structure (order of vector {u,}).

The eigenvalue problem equals (analogous to Eq. 2.2)

[K::]{¢f} = CO‘;"[M“]{¢1} (835)
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where {¢,} represents the jth eigenvector (mode shape) and ? the corresponding
eigenvalue (square of the circular frequency). Assembling all suitably scaled
{¢,} in [®] and all w? as the elements in the diagonal matrix [Q], the orthogonality
properties are as follows (Eq. 2.3):

[@)[M,)[®] = [1] (8.362)
[OY[K,JP] = [€] (8.36b)

The following relationship is defined
{15} =[]z} (8.37)

where {z} represents the vector of the modal amplitudes.
The transformation matrix relating the old to the new variables for the case
where the total base motion is transmitted quasi-statically into the structure

equals . ®
- e

Substituting Eq. 8.38 in Eq. 8.32, premultiplying by the transposed transforma-
tion matrix and using Eq. 8.36 results in

[ QI + 28) — o]
— H((M,,J + [T VM, D®) |
— @ (M.,] + M, NT..) B3 [ 0
[Sib] -+ [Sb:][T:b] - wz[Txb]T([M:b] -+ [M.\':][T.vb]) -+ [Sg,,:H{u;}} N {[S{b]{u{}}
(8.39)

The contribution of the structure to the coefficient matrix of this equation is
analogous to the coefficient matrix of the reduced equation, applying substruc-
ture-mode synthesis (Eq. 4.27). In the derivation of the latter equation, a lumped-
mass matrix is assumed ((M,,] = [0]).

For the case in which the base motion relative to that of the free field is
transmitted quasi-statically into the structure, the same transformation matrix
Eq. 8.38 applies, but with {u,} instead of {u}} being one of the variables. Pro-
ceeding as before, Eq. 8.34 is transformed. The coefficient matrix with the
unknowns {z} and {1,} of the equations of motion is identical to that in Eq. 8.39.
The load vector equals

2[ [@F((M.5] + [M,NTD } [ [0] ]
® (s} + fuf}
(T (M) + [MT,6D —[S5 [T ] — [S3:] + [S5]
The matrix [OF(M,,] + [M,,)[T.,]), which also appears on the left-hand side,
contains the generalized modal loads (participation factors) for the structure
built in at its base.

The order of the equation of motion in Eq. 8.39, which has to be solved
for each frequency w, is generally considerably smaller than in the other formula-
tions. In addition, valuable insight is gained in determining the frequencies and

(8.40)
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mode shapes of the structure fixed at its base. If the number of mode shapes
included in Eq. 8.37 is the same as the number of degrees of freedom of the
built-in structure, the method, of course, leads to identical results (apart from
numerical inaccuracies).

All the different formulations are schematically represented in Fig. 8-5.
The unknowns at the base and in the other nodes of the structure which appear in
the specified equations are indicated with a solid line. The vector and matrix
symbols are deleted. The part of the motion that is transmitted quasi-statically
is indicated with a dashed line.

BASE RESPONSE MOTION BASE RESPONSE MOTION

TOTAL RELATIVE FREE FIELD
ul u
8.13 8.18
T oy
QUASI -~ STATIC Toul W Tl
TRANSMISSION {'7 8.24 K{ 8.28
FREE FIELD 2 8.23 D _i 8.27
INPUT MOTION ol o up Tyupu
QUASI - STATIC Twuh (=0n) ooy ul (<o)
TRANSMISSION [ —==--- = 7T e
BASE RESPONSE b N 833
MOTION ul (8.39 ul uyp (8.40)
8.38)

Figure 8-5 Transformation of response motion at base and in structure.

For the special case of rigid soil, for which no soil-structure interaction
occurs, the various formulations also apply. For easy reference, the equations
of motion of the built-in structure with prescribed motions at its base {u}}
(= {uf}) are specified in the following. They can be derived from the equations
corresponding to the nodes of the structure not lying on the base.

From Eq. 8.13, the equation expressed in the total motion {#} follows.

[S.Jui} = —[S.Hut} (8.41)
Enforcing {u}} statically on the structure leads to (Eq. 8.24)
[S.r:]{u':} = wz([Msb] + [M::][st]){utb} (8'42)
with
{u} = [T, {ui} + {ui} (8.43)

The same formula is also derived from Eq. 8.28, 8.32, or 8.34.
In modal amplitudes (Eq. 8.37), Eq. 8.39 results in

(A + 2{DIQ] — [z} = (O (M,,] + [MNT,Diwi}  (8.44)
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Valuable physical insight can be gained from the formulations summarized in
Fig. 8-5. However, they are just alternative algebraic formulations of the basic
equation of motion and do not contain any additional structural mechanics.
All that is actually needed to solve the most general case of soil-structure
interaction is this basic equation expressed in total displacements, which, for a
flexible base, is specified in Eq. 8.13.

8.3 SUBSTRUCTURE ANALYSIS WITH RIGID BASE

As discussed in Chapter 4, the base consisting of the basemat and the adjacent
walls can be assumed to be rigid in many cases. This compatibility constraint
on the structure-soil interface leads to a slight modification of the various
formulations developed in Section 8.2. As the number of degrees of freedom is
reduced compared to a flexible base, the various formulations can more easily
be interpreted physically.

8.3.1 Basic Equation of Motion in Total Displacements

The same structuresoil system of Fig. 8-1 is shown with a rigid base in
Fig. 8-6. The total motion at the base {#}} can be expressed as a function of the
rigid-body total motions of a point O {u} as

{u} = [AHu2} (8.45)

The matrix [4] represents the kinematic transformation with geometric quantities
only.

Starting from Eq. 8.13 and proceeding analogously as in Section 3.1.2, the
basic equation expressed in total motion is formulated as

501 5. ] {{u:}} ={ © } .
{[So,] | issd + st Ly = 4TSt} (8.40)

This equation is identical to Eq. 3.15, in connection with which the nomenclature
is defined. In particular, [SZ] represents the dynamic-stiffness matrix of the
soil (with excavation) for a rigid structure-soil interface (Fig. 3-6), as specified

Figure 8-6 Structure-soil system with i
rigid base.
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in Eq. 3.16c:
[S&] = [A)[SE]A] (8.47)
The corresponding scattered-wave motion {u#} is given in Eq. 3.19 as
{ug} = [SEI[ATIST){uf} (8.48)
Using this equation, Eq. 8.46 is reformulated as (Eq. 3.20)
[[s,,] s M{u:}} _ { (0} } ©49)
[Soc] | Sl + [S&1 ({ui} [S&Hus}

As this equation is often referenced below, it is restated here.
8.3.2 Base Response Motion Relative to Scattered Motion

When trying to proceed as in Section 8.2, it is apparent that it is not
possible to define a motion of the base relative to the free-field motion as in
Eq. 8.17. This follows from the fact that {u]} is not compatible with {#:}. Only
for surface structures being excited by vertically propagating body waves are
the two motions compatible. This special case, however, is contained in the
formulation based on the following reference soil system.

The response motion of point O of the base can be defined relative to
{ug}, as the latter incorporates the constraints of the rigid-body motion. With

A {ut} = {ug} + {u,} ' (8.50)
Eq. 8.49 is reformulated as

[S.]i [S.] {u:}} B _[[S,D]J ‘ 851
[[Sos] AR [sgoJ {{u,,} = sy (8.51)

This equation corresponds to Eq. 8.20 for a flexible base.
8.3.3 Quasi-static Transmission of Scattered Motion

As in Section 8.2, further formulations can be developed starting from
Eqg. 8.49 (or Eq. 8.46) and from Eq. 8.51. In this first group, the dynamic motion
{14} is defined relative to that resulting when the known motion of the ground
{ug} is applied statically. In connection with the formulation in total motion
(Eq. 8.49), the following equations apply (Eq. 8.23):

{ui} = [T,oJ{us} + {ui} (8.52a)

{ug} = {ul} + {ul} (8.52b)
where

[Tso] = _[KJJ]_I[K.YD] (8'53)

The quasi-static transformation matrix [T,,] follows directly from rigid-body
kinematics, analogously to the matrix [4]. As discussed in connection with
Eq. 3.30, [T.,] depends on geometric quantities only and not on the stiffness
properties of the structure. This is shown in Fig, 8-7a. For the sake of clarity,
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Figure 8-7 Quasi-static transmission. (a) Base input motion; (b) base response
motion.

the inner part of the structure shown in Fig. 8-6 is deleted. The undeformed

structure is shown as a thin line, the structure after the quasi-static transmission

of {u#} as a dashed line, and the deformed structure exhibiting the total motion

as a solid line. The symbols for vectors and matrices are omitted.
Substituting Eq. 8.52 in Eq. 8.49 leads to

[[S”]a [S..] ] {{u‘i}} _ cD{[M,O] + [MJT.

B == H 8.54
5.1 1520 + rsa) o e+ [Mos][Tm]]{u} (®.349)

The load vector does not contain any static-stiffness terms, inasmuch as
[K;o] - [Ko:][Ks:]-l[Kso] = [0] (8'55)

and this expresses static equilibrium of the structure. Equation 8.54 can, of
course, also be derived directly from Eq. 8.24. The load vector is equal to the
negative product of the mass of the structure and of the seismic-acceleration
amplitude, the latter being determined by applying the acceleration amplitude
{iif} (= —*{ug})) in point O at the base and applying rigid-body kinematics.
See Problem 8.1 for a numerical example.

In connection with the formulation of Eq. 8.51 (base motion relative to
{u}), it is straightforward to demonstrate that transmitting quasi-statically
{uf} into the complete structure-soil system, the same equation, Eq. 8.54, results
(T,] = 0).

This procedure, which defines the dynamic motion {1} relative to that
resulting when the motion of the ground {u$} is applied statically, should be
compared to the two-step approach which splits the total motion into those
caused by kinematic and by inertial interactions. Comparing Eq. 8.52 with
Eqs. 3.27 and 3.29 as well as Eq. 8.54 with Eq. 3.32, it is obvious that for a rigid
base, the two formulations are the same: the quasi-static transmission of the
ground motion corresponds to the kinematic motion ({u#} = {ut}, [T, J{us}
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= {¥*}) and the dynamic part forms the inertial motion ({#°} = {¥'}). This is
also apparent comparing Figs. 8-7a and 3-12.

8.3.4 Quasi-static Transmission of Base Response Motion

For the sake of completeness, the formulas are also specified for the
second group, where the unknown response base motion is transmitted quasi-
statically. In connection with Eq. 8.49, the following transformation, which is
illustrated in Fig. 8-7b, is introduced.

o Al 4 a3

Substituting Eq. 8.56 in Eq. 8.49, premultiplying with the transposed transfor-
mation matrix and using Eq. 8.55 results in (see also Eq. 8.32)

[ [S.\'S] ;
— ¥ (M, ] + [T, ]'[M,,))

_wz([M:a] + [M.\'s][Tsa]) J{{u?}}
—o*([M;] + [M T, + [T.JIM,] + [T, JIMT,.D) + [S&1 ({ui}
{0} }
= 8.57
swaf ©57

The load vector can be transformed using Eq. 8.48, thus introducing {u]}.
In connection with Eq. 8.51, the following transformation applies:

{ui} = {us} + [T, Hu,} ' (8.58)
The relative motion {u,} is defined by Eq. 8.50.
Proceeding as above, the coefficient matrix of the equations is the same as

in Eq. 8.57, but with the unknowns {#¢} and {u,}. The load vector equals (see
also Eq. 8.34)

M M T,
w[ [M.] + [M,])T..] }{ug} 559)
[Mzo] + [MOS][TJO] + [TSO]T[M.VO] + [TSO]T[MSS][TIO]
The matrix [M;,] + [M,J[T..] + [T.J'[M,,] + [T.J'IM,)T,,], which also ap-
pears on the left-hand side, contains the generalized mass of the structure

with respect to the base, that is, the rigid-structure properties: the mass, the static
mass moment, and the mass moment of inertia.

8.3.5 Transformation to Modal Amplitudes of Fixed-Base Structure

Finally, {u?} can also be expressed as a linear combination with the ampli-
tudes {z} of the first few vibrational modes [®] of the structure on a fixed base.
This transformation is specified in Eq. 8.37. Equation 8.57 is then transformed
as follows. The first three submatrices of the coefficient matrix with the unknowns
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{z} and {ut} are specified in Eq. 8.39, with the subscript o replacing b. The fourth
submatrix (lower diagonal matrix) and the load vector are given in Eq. 8.57.

In connection with Eq. 8.58, the coefficient matrix of the resulting equations
with the unknowns {z} and {«,} is the same as the one described in the preceding
paragraph. The upper subvector of the load is specified in Eq. 8.40, the subscript
o replacing b and the superscript g the letter f. The lower subvector is given by
the corresponding quantity in Eq. 8.59.

The formulations developed in this chapter are applicable to much more
general structural configurations than the single structure embedded in soil
(Figs. 8-1 and 8-6). They can be used to analyze soil-structure interaction of
complicated systems as shown in Figs. 1-3 and 3-9.

8.4 APPROXIMATE FORMULATION IN TIME DOMAIN

It is possible to analyze soil-structure interaction remaining in the time domain
by introducing approximations. The most common one neglects the frequency
dependence of the dynamic stiffness of the soil. The latter’s force-displacement
relationship is represented by means of a frequency-independent spring and
dashpot. This procedure is adapted in the introductory example in Section
3.4.4. In addition, in certain cases, the total structure-soil system (and not only
the structure, built in at its base) is assumed to have classical modes. Although a
comprehensive treatment of these methods lies outside the scope of this text,
certain aspects are discussed in the following, using the equations for a rigid base
of Section 8.3 for illustration. Analogous formulations also apply for a flexible
base.

8.4.1 Basic Equation of Motion in Total Displacements

In principle, all dynamic equations in the frequency domain can be approx-
imated as follows. For instance, Eq. 8.49 is written as

[[M,;][M,o]] {{Fi}} n [[C”] I (e i‘{{fi}}
[M, M) | {72} [Coel | [Co] + [CELI LS}

. [[K,,]; [K.J } {{r:}} :{ 0} }
Ko | 1Ra + ke 0]~ ka)rs + (caltrs

The letter  denotes a displacement as a function of time. The vectors {r§} and
{#%) represent the displacement and velocity, respectively, of the scattered motion.
The dynamic-stifiness matrix of the soil [SZ,] is approximated as

[S5(w)] = [KE] + iwlCS, (8.61)

where the static-stiffness matrix [K%,] containing the spring coefficients and the
damping matrix [C%,] are both independent of the frequency. They are calculated

(8.60)
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for the fundamental frequency of the structure-soil system, for example. Equa-
tion 8.60 can be solved, for example, by direct integration. This even allows
a nonlinear structure to be investigated.

8.4.2 Quasi-static Transmission of Base Response Motion

Various transformations in the time domain are also possible. To be able
to simplify the equations, the mass matrix is assumed to be diagonal ([M,,] = [0]).
For instance, in analogy to Eqs. 8.50 and 8.58, introducing {r,}, the displacement
of the base relative to the scattered motion, and {r?} defined by

{r} =1{r8} + {r} (8.62a)
{ri} = [T, Hr} + {r]} (8.62b)
Eq. 8.60 is transformed to

[ [(M,] 3 (M, ][T,) H{F”}} L [[C”] ]{{r”f}}
[TSD]T[MSJ’] } [M;O] + [TSD]T[MSS] -“0] {ra} [Cga {':0}

Rl [ I I
+ - - {71}
[Kﬂgﬂ {rﬂ} [MZU] + [TJO]T[M.TS][TS 0]

In the frequency domain, the corresponding left- and right-hand sides are
specified in Eqs. 8.57 and 8.59, respectively.

(8.63)

8.4.3 Transformation to Modal Amplitudes of Total System

In general, the transformation to normal modes of the total soil-structure
system does not uncouple Eq. 8.63, that is, classical normal modes do not
exist (Chapter 2). Disregarding as a further approximation the off-diagonal
terms of the transformed damping matrix, a simple solution procedure results.
This modal analysis in the time domain proceeds as follows: A tilde (7) denotes
the values corresponding to the uncoupled system of equations of the total
system. The eigenvalue problem equals (Eq. 2.2)

[K“] — B2 [M-"S] E [M::][T:o] :I 864
{ [sz{‘g’} “”[{Tmr[ .| ez + oy [® @69

The following~ orthogonality equations (Eq. 2.3) apply for the suitably scaled
mode shape {¢,;} and circular frequency @,:

r [M_,_,] E [M:s][T.m] :I =1 8.65
Z [[TMF[M,,] M) + [Tm]T[M“][Tm] 2 (8.6

@y [B=e e

Assuming all {§,} as columns in [®], the following transformation is defined
(Eq. 2.4):

m} — Bl (8.66)
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where {y} represents the vector of the (first few) modal amplitudes. With this
transformation, Eq. 8.63 is approximated as

[M,T,]
[MZ,] + [T, F M ]IT

whereby such an equation can be formulated for every amplitude y,. The equiva-
lent modal-damping ratio {, is given by

> | (o8
Cj = %} {¢1}T[[ ]

V,+ 28,69, + By, = _{61}T[ J{Fé’} (8.67)

[ngw,} (8.68)

C
The off-diagonal terms in the transformation [@]T[[ o] [C‘]J[é] are thus

neglected. When solving Eq. 8.64, it should be remembered that [K&,] is frequency
dependent and thus is a function of @,. An iterative procedure should be applied
when determining {¢,;} and &,. The dependence of [CZ,] on frequency should
also be taken into account when calculating {, (Eq. 8.68). This is especially
important when the dynamic-stiffness matrix of the soil varies strongly with
frequency (layered sites; see Sections 7.3 and 7.4.1). Application of Eq. 8.68 (or
of similar approximations) is, however, not without danger. Experience has
shown that such a weighting process with the mode shapes can overestimate
the damping ratio of a specific mode which is in reality hardly damped. This can
lead to an underestimation of the final result if this mode has a large generalized
modal load.

8.4.4 Transformation to Modal Amplitudes
of Fixed-Base Structure

Finally, another formulation for which {rd} is expressed as a linear com-
bination of the first few vibrational mode shapes [®] with frequencies [Q] of the
structure on a fixed base with the amplitudes {z} is often applied (Eq. 8.35).
In analogy to Eq. 8.37, this leads to

{ri} = [0){z} (8.69)

where {2} is a function of time. This formulation allows the structure’s fixed-base
ratios of damping, which is, in addition, assumed to be viscous, to be introduced
directly. The latter form the diagonal elements of the matrix [{}. Eq. 8.63
is then transformed, using the same procedure as in the frequency domain
(Egs. 8.39, 8.58, 8.40, and 8.59), to

[ 1] L [OFIMIT.] J {{z}} +[2[0[01”2 } {{z'}}
[T,FIM,J®] | [Mz] + [T YIMT, 7 (1] (7.}

+ [[Q] ]{{z}} _ _\: (@M, T, ]{F,}
LEARMA [M:)] + [T FIM T, ° (8.70)
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It is worth mentioning that in the formulation in the frequency domain the
damping of the structure is assumed to be hysteretic, while that in the time
domain (Eq. 8.70) is viscous.

Again, Eq. 8.70 can be solved approximately, assuming normal modes to
exist. The transformation of Eq. 8.66 applies with {r¢} replaced by {z}. The
decoupled equations of motion are equal to

[T [M,,IT,.]
[Mzﬂ] + [TIO]T[MSJ][TJO]
where {§ ;} (appropriately scaled) and &, follow from

[Ql } 71 _ ~2[ [71 | [®1[M.,IT,] J 7 8.7
el O e | e e[ 67

The equivalent modal-damping ratio { ; equals

5 ALNQY/2
4= gt

¥+ 28,8,9, + &ty = _{$J}T|: }{Fé‘} (8.71)

[cs, }{951} (8.73)

Alternatively, if the structural damping is assumed to be hysteretic with a ratio
{ (Eq. 8.39),

4

- 22-[Q .

¢ = %M/V[ w,[ ] }{¢j} (8.74)
(C&,

results.

Valuable physical insight can be gained by comparing the natural fre-
quencies w;, the mode shapes {¢,}, and the damping ratios { of the structure
built in at its base with the corresponding values &,, {§,}, and {, of the total
structure-soil system. The procedure is, however, as already mentioned, approxi-
mate, as, in general, classical normal modes do not exist, and the dynamic
stiffness of the soil depends on the frequency of excitation. The latter can only
crudely be taken into account by considering the values at the natural frequencies
of the total system.

8.5 ANALYSIS OF NONLINEAR STRUCTURE
WITH LINEAR SOIL (FAR FIELD)

8.5.1 Types of Nonlinearities

The procedures developed in this text assume linear or at least quasi-
linear behavior of the structure and of the unbounded soil. It is, however, well
known that structures are designed by providing sufficient ductility to perform
in the nonlinear range for high seismic excitation. Base-isolation systems with
friction plates which exhibit strong nonlinear characteristics for the design basis
earthquake are routinely being used, even for nuclear-power plants (see Section
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9.3.4). Other local nonlinear effects include the partial uplift of the basemat,
the separation occurring between the walls of the base and the neighboring soil
in the case of embedded structures, and the highly nonlinear soil behavior arising
adjacent to the basemat. In all these cases, the nonlinear behavior is restricted
to the structure and possibly an irregular soil region adjacent to the structure
(the near field), while the far field of the unbounded soil is assumed to remain
linearly elastic with material damping. Referring to Fig. 3-8, the line joining the
nodes with subscript b separates these two regions.

8.5.2 Equation of Motion in Time Domain Using
Convolution Integrals

To analyze such cases, procedures that work directly in the time domain
are presently being developed. Of the many approaches being proposed (e.g.,
the superposition of solutions which cancel all reflections in an explicit time-
domain solution), the following one is a direct generalization of the method used
for the linear case. A brief discussion to demonstrate certain features is appro-
priate; a thorough treatment, however, lies beyond the scope of this text.

Transforming the basic equation of motion (Eq. 8.16) to the time domain
leads to

{0} {0} (8.75)
i { [ st — Dltrice} dr} B { [ 15 — Dl dr}

If the structure and the irregular soil region exhibit a nonlinear behavior, the
second and third terms on the left-hand side are replaced by a vector with {R,}
and {Rj}, where {R} denotes the (nonlinear) internal forces. In this convolution-
integral approach for the contribution of the soil to the equations of motion,
the dynamic-stiffness matrix in the time domain [S,()] contains the forces
required to produce unit-impulse displacements. Denoting the interaction forces
of the soil in the time domain as {R#(z)}, in analogy to the contribution of the
soil to the terms in Eq. 3.4,

(RO} = [ 158 — DU} — (@D de (8.76)
applies. Analogously,
i} — (1O} = [ FH( — DIRE@) de ®.77)

holds, whereby the displacements for unit-impulse forces form the elements of
the dynamic-flexibility matrix in the time domain [Fg(z)]. The vector {rf()}
describes the scattered input motion in the time domain, which can be calculated
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from the free-field response {r{(¢)} based on Eq. 8.15. (Alternatively, Eq. 8.13
could be transformed to the time domain, involving the convolution integral

jt [S{.(t — ©)){r{(z)} dz on the right-hand side of the equation.)
0

Equation 8.75 is solved directly in the time domain, taking the nonlin-
earities into account, using, for example, an explicit time-integration scheme.
Such a procedure is also possible using a flexibility formulation (Eq. 8.77) for
the contribution of the soil (far field) together with the direct stiffness method for
the structure and the irregular soil region (near field).

8.5.3 Transformation of Stiffness Matrix

By definition, the dynamic-stiffness coefficient in the time domain S(z) is
equal to the force that produces a unit impulse displacement in the time domain
(Dirac delta function). Transforming the unit impulse displacement into the
frequency domain (Eq. 2.17a),

u(w) = j: r(t) exp (—iot) dt = f: 8(t) exp (—iot)dt =1  (8.78)

formulating the force-displacement relationship in the frequency domain,

P(w) = S(w)u(w) = S(w) (8.79)
and applying the inverse transformation (Eq. 2.17b) leads to
R() =L f :” P(@) exp (ioor) do> = - f +: S(w) exp (iwf) do  (8.80)
which means, as S(t) = R(?),
S0) = A f :” S(@) exp (i) do> (8.81)

that is, S(¢) and S(w) form a Fourier transform pair. Analogously for the
dynamic-flexibility term

F(t)zi%f

+o0

F(w) exp (iw?) do (8.82)
applies, with
F(w) = S(w)™! (8.83)
In analogy to S(w), which is formulated as a function of the dimensionless
frequency a, = wl/c, (Eq. 7.64), it is convenient to introduce the dimensionless
time 7 in S(¢):
= C—l’t (8.84)

Using dimensionless parameters, the Fourier transform pair for the dynamic-
stiffness coefficient is equal to

S(#) =

e, (7 -
27”-[ S(a,) exp (ia,f) da, (8.85)

—o0
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and for the dynamic-flexibility coefficient
F(i) = 297:7 f F(a,) exp (ia,f) da, (8.86)

As the frequency tends to infinity, S(w) will be infinite. It is thus necessary to
decompose S(w) into a regular part and a singular part whose transformation is
valid only in the sense of a distribution. As F(w) tends to zero for @ — oo,
working with dynamic flexibilities may turn out to be computationally simpler.

8.5.4 Rod with Exponentially Increasing Area

As an example, the rod with the exponentially increasing area introduced
in Section 5.1 is examined. Dropping the subscript 1 in Eq. 5.31, the dimension-
less stiffness coefficient S(a,) of the undamped rod with a, = wf]c, is equal to

Sta) = 301 + T —4a) (8.87)
with the static value KX specified by
EA
K== 8.88
7 (8.88)

For a, — oo, §(a,) converges to } + ia,.
Substituting Eq. 8.87 in Eq. 8.85 and replacing / by f and ¢, by ¢, (Eq. 5.7)
leads to

S = % [21_” f - exp (ia,0) da, + o= fwbexp (ia,f) da, ]

co

(8.89)

The first term is equal to 8(7)/2 (see Eq. 8.78). For f > 0, the second term can be
shown to result in J,(7/2)/(2f), where J, is the Bessel function of the first kind
and of the first order. The remaining contribution of the second term (for 7 = 0)
leads to dd(f)/df. Equation 8.89 is thus transformed to (for 7 > 0)

56 = % [ 5(7) + d‘s(’ ) 4 Z’l( ! )} (8.90)

and for 7 < 0, S(f) = 0. The regular part J,(7/2)/(27) is plotted as a function of
7 in Fig. 8-8. For f = +0, the value equals 0.125.
Eliminating the dimensionless time 7 using

f= % (8.91a)
8(F) = CLI&(t) (8.91b)

doi) _ f?
== ?%—5(1) (8.91¢)
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Figure 8-8 Regular part of dynamic-stiffness coefficient (in time domain) of
rod with exponentially increasing area.

Eq. 8.90 is transformed to

8ty = 580) + CLI(;(I) + o7 (357) (8.92)
The force R(¢) follows from the convolution integral
R(t) = K jo S(t — Dr(z) dr (8.93)
Substituting Eq. 8.92 in Eq. 8.93 leads to
R(1) = I:——r(t) +L H(0) + 1 f (3 f(t 1)) r(z) dr} (8.94)

Alternatively, the “dimensionless”-flexibility coefficient in the time domain
F(f) can be calculated. The latter multiplied by f/c, corresponds to the integral

(1/2n) rw [1/5(a,)] exp (ia,f) da, and is plotted as a solid line in Fig. 8-9. No
singular part exists. The displacement r(¢) follows, using this flexibility formula-
tion after transforming back to time ¢, as

r(t) — _11? "Fie — DR dr (8.95)

Viscous material damping can be defined, again using the correspon-
dence principle, as
E* = E(1 4+ 2{,wi) (8.96a)

or introducing a nondimensionalized damping ratio {, as
E* = E(1 4+ 2{,a,) (8.96b)
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Figure 8-9 Dynamic-flexibility coefficient (in time domain) of rod with expo-
nentially increasing area.

whereby

{,=+L, (8.96¢)

<o

applies. The subscript v stands for viscous. The corresponding flexibility coeffi-
cient F(7) is also shown as a dashed line for {, = 0.2 in Fig. 8-9. In contrast to
the undamped case, F(f = +0) = 0 for the viscously damped one. For the
flexibility coefficients, the calculations are performed numerically.

8.5.5 Disk on Half-Space and on Layer

Finally, the “dimensionless”-flexibility coefficient in the time domain for
the rocking motion F,(f) of a rigid disk of radius a resting on a half-space with
Poisson’s ratio v = 0.33 is determined. Multiplied by a/c,, this value represents

the integral (1/27) f " 1k, (a) + ia,c,(a))] exp (ia,f) da,. The dynamic-

stiffness coefficient in the frequency domain k,,(a,) + ia,c,,(a,) is taken for the
undamped case from Fig. 7-19. The results determined numerically are shown in
Fig. 8-10. Uniform viscous material damping is also introduced, defined by

G* = G(1 + 2L,a,i) (8.972)

A* 4 2G6* = (A + 26)(1 + 2{,a,0) (8.97b)

The results for the damped case with £, = 0.10 are also shown in Fig. 8-10.
It should be noted that F,(f) determined numerically, is, from a practical point

of view, equal to zero for 7 < 0.
The corresponding results for two damping values for a disk resting on a
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Figure 8-10 Dynamic-flexibility coefficient for rocking (in time domain) of
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Figure 8-11 Dynamic-flexibility coefficient for rocking (in time domain) of disk

on layer built in at its base.

layer built in at its base with the radius equal to the depth of the layer (v = 0.33)
are presented in Fig. 8-11. As expected, the oscillations are more pronounced

in this case.

SUMMARY

1. The basic equation of motion expressed in total-displacement amplitudes of
the nodes in the structure and on the structure-soil interface (base) can also
be derived starting from the equation of motion of the total structure-soil
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»
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system. The direct method and the substructure procedure will thus lead to
identical results, if implemented consistently.

The motion of the base can be defined relative to that of the free field, keeping
the total motion of the other nodes in the structure as unknowns. The coeffi-
cients of the basic equation of motion are unaffected. The load vector equals
the negative reaction forces resulting when the free-field motion is enforced
along the base of the system consisting of the structure and, in the embedded
part, of the difference of the structure and the soil, with the other nodes fixed.
Alternatively, the motion of the base can be defined relative to that of the
scattered seismic-input motion of the soil with excavation. Enforcing this
scattered motion along the base of the structure with its other nodes fixed
results in the negative load vector. This alternative formulation can also be
used for a rigid base.

Transmitting the (known) free-field motion along the base quasi-statically
into the structure does not, in general, result in the kinematic motion. Defining
the dynamic motion relative to this quasi-static reference system does not
change the coefficient matrix and leads to a load vector consisting of inertial
loads and contributions involving the stiffness matrix of the structure and of
the embedded soil.

Transmitting the scattered motion of the soil with excavation (with the
compatibility constraints enforced) quasi-statically into the structure with a
rigid base leads to the kinematic motion. The remaining dynamic motion is
equal to that of the inertial-interaction part with a load vector consisting of
inertial loads based on the acceleration of the kinematic interaction.

Transmitting the (unknown) total base motion quasi-statically into the struc-
ture and defining the dynamic motion relative to this reference system result
in a transformation of the coefficient matrix. The load vector is unchanged.
This formulation can also be used to reduce the number of degrees of free-
dom of the structure by introducing the first few amplitudes of the vibra-
tional modes of the structure fixed at its base.

Representing the soil by a frequency-independent spring and dashpot (cal-
culated, for example, at the fundamental frequency of the system), itis possible
to analyze soil-structure interaction approximately, remaining in the time
domain. In addition, classical normal modes can be assumed to exist. When
calculating the natural frequencies and the mode shapes, the frequency
dependency can be crudely taken into account by iteration. The damping
terms coupling the different modes are disregarded.

Generalizing the calculational procedure developed in this text, it is possible
in principle, to analyze a nonlinear system, if the nonlinearities are restricted
to the structure and the adjacent soil. The unbounded soil (the far field)
must remain linear with material damping. The equation of motion in the
time domain contains convolution integrals involving the dynamic-stiffness
coefficients of the soil in the time domain (i.e., the force as a function of time
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which produces a unit impulse displacement). The dynamic-stiffness coeffi-
cients in the time and frequency domains form a Fourier transform pair.
As the dynamic-stiffness coefficients are infinite for the frequency tending
toward infinity, the transformation of the singular part is valid only in the
sense of a distribution. It may be computationally simpler to work with
dynamic-flexibility coefficients and thus to formulate the contribution of
the unbounded soil to the equations of motion by using the flexibility
approach.

PROBLEMS

8.1. For the system shown in Fig. P3-1, derive the harmonic equations of motion for
which the (unknown) response-base motion is transmitted quasi-statically (Eqs.
8.57 and 8.59). Also establish the equations of motion using the amplitude of the
fundamental fixed-base mode as generalized coordinate. Certain property matrices
of this system are specified in Problem 3.1.

Solution:

At first, the displacement amplitudes of the structure are defined relative to those
of the total rigid-body motion of the base as (Eq. 8.56)

ud
I wi
{u’} _ [1 1 74/_3_:' u
wt 1 1 wt
¢r
Using [S,,] derived in Problem 3.1, and with {M,,] = 0, Eq. 8.57 is equal to
_ / _ = _
/ 1 1 5] -
1 1 3
I EA 2
—me? 1 1 7ﬁ + —l—(l +20)
1 1
! ) 32
\ 7 7V3 T B i
_ — \ [ N
wd
+ st w3 =TSt ug) 9
aH wh 53 ws
Sz ) ¢, AH ﬂg
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Expressing the amplitudes of the structure relative to those of the rigid-body motion
of the base relative to the scattered motion as (Eqgs. 8.50 and 8.58)

uw 1 1 é—ﬂ ul
wt 1 wé
u, = 1 u, + uf
wh 1 W, wE
¢/ L 1 ¢/ \Bs

the coefficient matrix of the equations is the same as above, but with the unknowns
ué, wi, u,, w,, and ¢. The right-hand side equals (Eq. 8.59)

— ; -
! 723
1 us
wm| 1 L |we
. B
/ 32
| 2V 3 4|
The eigenvalue problem of the fixed-base structure equals (Eq. 8.35)
EA _:1? !
T 3|~ wim (¢} =0
5 1
Setting the determinant equal to zero,
E4 _ o )(2@ — w? ) -
(57 — wim)(3f" — @im) =0
leads to
wZ = EA
17" 2m
3EA
2 — oLA4
D2 = 2m

Suppressing the higher mode [i.e., selecting w? = EA/(2Im)], the mode shape fol--
lows as

1
{$}= {Mm}
0

whereby the scaling factor has been selected such that Eq. 8.36a is satisfied.

= o[ -

0
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The following transformation applies (Eq. 8.37):

- fe-

The vertical fixed-base mode is disregarded when using this relation, and doing
so has the effect that, in the vertical direction, the structure (i.e., the two truss
bars) is rigid. The corresponding equation of motion is equal to (Egs. 8.39 and
8.57).

1 N Lvsvm
— l
o Am m 5/ 3m
m
) — I 32
——2'»\/_3_»\/'" 74/ 3m Tm |
" EA . 1
m(l + 2§i) z3
i Sz u; ) g AR
Se w St we
szl ¢ B AH

Selecting z,, u,, w,, and ¢ as the unknowns does not change the coefficient matrix.
The load vector equals (Eqgs. 8.40 and 8.59)

m Lzvm
! S
w2 m —2—,\/_3_»\/”1 wg
m ﬂz
2
TN

8.2. Verify that for a surface structure excited by vertically incident waves, the second
term of the load vector (with the static stiffnesses of the structure) of the equa-
tions of motion based on the quasi-static transmission of the free-field input
motion (Eq. 8.24) vanishes. In this case the equation of motion is identical to that
of inertial interaction (Eq. 3.26).

8.3. Derive the equation of motion based on the quasi-static transmission of the scat-
tered input motion {u4}.

[[S.M‘] : [S.rb] :H{u?}} = 02 [[M.\'b] + [M::][le]]{ug}
[S5s] | [S35) -+ [SE] (e IM3] + Mo Tl *

[0] ]
+ 8
[_(1 T 20K + KT P
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84.

8.5.

[

Hints:
Substitute the transformation
{ut} = [To}ug} + {(ud}

{us} = {ug} + {ug}
in Eq. 8.16, where
[T:b] = _[K:;]—I[K:b]
Derive the following equation of motion:
[Se]i  [Swl | {u} [0]
] ~ ' — -
[Se] | [S5e] + [SE] | [Sedd |{{s3}e = [S{} ({uf}
; [§ | VIS W [S:]
where _ _
[(S7,] = [Sg,] + [Sg,]
{u} = {u} — {uf}
The nomenclature is defined in Section 8.1.

This equation of motion corresponds to a direct method, in which the
motions of the structure and of the soil are calculated simultaneously. Note that
the free-field motion {u{} is required in those nodes only which subsequently will
lie on the structure-soil interface.

Hints:

Formulate Eq. 8.4 first for the structure-soil system and then for the free-field
system (with the “structure” representing the excavated part of the soil). The right-
hand sides are the same.

Derive the equation for the response of the base of a structure with a rigid base,
and identify the contributions of the modes of the fixed-base structure. Verify that
for low- and high-frequency excitations, the total mass of the structure and the
mass of the base, respectively, are excited.

Solution:

For the sake of a concise notation, the mass matrix of the structure is assumed to
be diagonal ([M,,] = 0). Using the amplitudes {z} of the modes of the fixed-base
structure and the total displacement amplitudes {1’} of the base, the equations of
motion are equal to (Eqgs. 8.39 and 8.57)

QI + 28i) — 1] — Y M, IT,0] :H{z}} _ { {0} }
— T FIM P | —w(M] + [Tl M, MToD + [S5] {0} 1S5 us}

Introducing the following convenient nomenclature for the diagonal matrix [D],
the generalized modal load matrix (participation factor matrix) [I'], and the gen-
eralized mass matrix [M,] (referred to the base)

[D] = [QI(1 + 2{) — w?[I]
[r] = [(D]T[MM][TM]
[Mo] = [M;a] + [T.ro]T[Ms.r][Tso]

'
1
!
i
|
i
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and eliminating {z} results in

{u} = (~wM,] — w*[TFID] I + [SE ] I[SE ] {us}
For a specified scattered motion {u#}, the amplitudes of the base {«!} are a function
of the generalized mass [A,] (i.e., a property of the rigid structure), of the partici-
pation factors [['], of the natural frequencies [Q], and of the damping ratio { of the

fixed-base structure and of the dynamic-stiffness matrix of the soil [S 2 ]. The second
term of this equation, rewritten slightly,

() = (—0¥(M,] + TTIDI[TD + [SgD~1[S2,1{ut}
can be interpreted as a frequency-dependent mass. The diagonal matrix w2[D] !
has as its jth element w?/(w? + w32{i — w?) = 1j(W}/w? + wiijw? — 1),
For low frequencies (compared to the fundamental built-in base frequency ®,),
that is, for a large value of @, /®, these elements tend to vanish, leading to

{w} = (—wM,] + [SED[SE ){us}

This equation states that, for low frequencies, the system behaves essentially as a
rigid body with the total mass of the structure resting on flexible soil. For high
frequencies (compared to the highest frequency ®,), that is, for a small value of
o,/m, these elements will approach the value —1. As

(TY] = [T M JOUDY M, N T ] = [TooF M NT0]
holds,

{w} = (02 (M,] — [T JIM,NTD + [S&)7[S8 ){uz}

= (—M;,] + [SED[SE Jus}

results. (Premultiplying and postmultiplying [®)[M,,][®] = [I] by [®] and by
[®]71, respectively, result in [®]D])7[M,,] = [I]) This equation means that, for
high frequencies, the effective system consists only of a rigid base with its cor-
responding mass resting on flexible soil. The actual structure is of no importance
in this case.

To derive a clearer physical interpretation of the contributions of the modes
of the fixed-base structure, the following transformations are performed. Sub-
stituting

[M,] = [M:] + [T JFFIMNT,) = [M;,] + [T
in
[M.] + @ [TF[DI '] = [M:,] + [T (@Dt + [IDIT]
and defining
[H] = @?[D]! + [I]
leads to
{tt} = (—w?([M:] + [TTIHITD + [SED S8 Jus}
The diagonal matrix [H] has as its jth element (corresponding to the jth mode of
the structure built in at its base) the value
___oj+opli
T 0t + 0¥2fi — o?
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This is equal to the amplitude of the total displacement u, of a one-degree-of-
freedom system with frequency ®; and hysteretic-damping ratio { excited by a
support displacement of unit amplitude u, of frequency w. The corresponding
equation equals

[—mw? + k(1 + 200w, = k(1 + 2{iu,
which, after introducing w} = k/m, results in

u w3l + 26i)

u, Xl + 20 — o? =h

The matrix [H] can thus be interpreted as a transfer matrix. The matrix [TFIHIT]
contains the (frequency-dependent) effective mass of the modes of the structure
built in at its base [M,¢]. This matrix can be decomposed into frequency-independ-
ent terms [M,] (fictitious mass) and frequency-dependent terms 4;. In general,
each mode j will contribute to the six components of the base as

[M;] = [T,FIT)]

where [I';] contains the participation factors of mode j. Summing all these [M,]
over all modes results in

? [Mf] = ; [FJ]T[FJ] = [F]T[r] = [T.w]T[Mu][Tsa]

The effective mass of the built-in modes of the structure is equal to
[Mese] = Ejl M1k,

When using the equation [[17[["] = [T,.F M, T, it is assumed that the number
of modes is equal to that of the degrees of freedom of the structure built in at its
base. If this is not the case, that is, if only the first few modes are considered, the
difference of [T,.J'[M,)T,.] (rigid-structure property) and of [['J[I'] can be re-
garded as the so-called lost mass. This expression arises because for these addi-
tional modes which were disregarded, /@; is a small value, resulting in 4; ap-
proaching 1. This lost mass can thus directly be added to M3, [Actually, if the
first equation for {u'} is used, which involves [M,], the term involving the fre-
quency-dependent mass w[['F[D]~![I] vanishes for those modes not included in
the analysis.] In general, M, of the higher modes is much smaller than those of
the lower ones, and assuming a reasonable structural damping which leads to a
limited transfer coefficient #;, the motion of the base is hardly affected by the
higher modes.

As an example, the vertical response w! at the base (i.e., at z = 0) of a pris-
matic rod of length / and total mass m for vertical excitation w, is calculated
(Fig. P8-5). The nomenclature is specified in the figure; the vertical dynamic-stiff-
ness coefficient of the soil is denoted as S¢. The straightforward model of the rod
consists of (equally spaced) mass points connected by springs. As an alternative,
an analytical solution can be used. The exact dynamic-stiffness matrix of the pris-
matic rod is specified in Eq. 5.57. Identifying the nodes 1 and 2 with the base and
the top, respectively, of the rod enforcing the boundary conditions w, = 0, P, = 0,
and setting the resulting stiffness coefficient for the undamped case equal to zero
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Figure P8-5 Vertical rod loaded by vertical seismic excitation.

results in the natural frequencies of the rod fixed at the base:

2j—1_¢
2 "7

The corresponding mode shapes are equal to

— 2j—1_=z
o,(2) ,/ sm_T_nT

whereby they are normalized to result in

fo' PH)pAdz = 1

The participation factor of the jth mode is calculated as

r,= f $,()1pAdz = fz%

o, = i=1,23,.

the fictitious mass as
8 m
Mi=gr—m

In particular, forj =1,

M1 =_—sm

n

which is already a dominant contribution to M, = m. With M;, = 0, the equa-
tions of motion are formulated as

wt = (— w23 M;h; + S8)71Skw,
7



ENGINEERING
APPLICATIONS

9.1 EVALUATION OF INTERACTION EFFECTS

In Section 3.4 the system with one dynamic degree of freedom shown in Fig. 3-18
is examined to identify the key parameters affecting soil-structure interaction.
In addition to the parameters introduced earlier, which in this section are varied
in different ranges corresponding to other types of structures, a mass m, and a
mass moment of inertia I, are now associated with the base (Fig. 9-1). The
frequency dependency of the dynamic stiffness of the soil is also taken into
account. Besides the half-space, a layer of varying depth d built in at its base is
addressed.

9.1.1 Dimensionless Parameters

The same dimensionless parameters as introduced in Section 3.4.4 are
again used to describe the response of this coupled system, which has three
dynamic degrees of freedom: the stiffness ratio of the structure and of the soil
§ = w,hfc, (where w, denotes the fixed-base frequency of the structure), the
slenderness ratio 4 = h/a, the mass ratio m = mj/(pa®), Poisson’s ratio of the soil
v, and the hysteretic-damping ratios of the structure { and of the soil {,. In
addition, the ratios m,/m and I,/(h*m) and d/a are introduced. The dynamic-
stiffness matrix of the soil is formulated analogously as in Section 7.2.5 as
[K,.J{k] + ia,[c]), where the diagonal matrix [K,,] contains the static-stiffness
coefficients, and [k] and [c] are the matrices of the (nondimensionalized) spring
and damping coefficients, respectively. The latter two matrices depend on dla,

405
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Figure 9-1 Structural model with soil.

v, {,, and on the dimensionless frequency a, = wa/c,. The elements of [k] and
[c] shown in Section 7.4.1 (or the corresponding values for the other ratio of d/a)
are used in the following. For instance, for the half-space, [K,,] contains the
elements 8Ga/(2 — v) and 8Ga?®/[3(1 — v)] for the horizontal and rocking
directions, respectively (Table 7-1).

9.1.2 Equivalent One-Degree-of-Freedom System

Denoting the corresponding terms in [k] as &k, and k, and in[c] as ¢, and ¢,
(these coefficients are thus used differently from in Section 3.4.1, where they have
a dimension, where a, is not used in the definition of the dynamic-stiffness
coefficients, and where they do not include the influence of {,), the properties
of the equivalent dynamic one-degree-of-freedom system can be calculated
(neglecting the influence of m, and 1,). It follows from Eq. 3.56 that the frequency
& of the soil-structure system equals

a2 1
w? L [2—v+3(1 ——v):l ®-
hk, k,
The equivalent damping ratio { (Eq. 3.61) is specified by
F @2 A\ 5*m[2 —ve,
@ e (1 — 9.2
(=0 + (B) SA 2 30 -0y 0.2)

The damping ratio {, does not occur explicitly in this equation, as the material
damping of the soil directly affects c,, k,, ¢, and k,. The coefficients k,, k4, .,
and ¢, are functions of a, evaluated at the frequency &. Equation 9.1 can thus be
solved only by iteration.

In the following, the equivalent properties are not determined from Egs. 9.1
and 9.2, but from solving the system of the three dynamic equations of motion,
varying the frequency of excitation w. At the natural frequency & of the soil-
structure system, the structural distortion u will be a maximum; the equivalent
damping ratio { follows from the product of |, |/|2u| and (@/w,)?, evaluated
at @ = @. The amplitude of excitation is denoted as u,. The second factor reflects
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the effective seismic input to be applied to the equivalent oscillator (see Section
3.4.3). The values &/, and {/{ are regarded only as a convenient measure to
characterize the effect of soil-structure interaction. All actual response calcula-
tions are based on the three dynamic equations of motion.

9.1.3 Depth of Layer

At first, the influence of the depth of the layer of soil on the response of a
structure is investigated, in particular the effect of the vanishing radiation
damping below the fundamental frequency of the site. In the horizontal direc-
tion, the latter equals nc,/(2d) (in radians) for a homogeneous layer. The structure
with a circular basemat of radius a is founded on the surface of the homogeneous
layer with depth d. The parameters are specified in the caption of Fig. 9-2.
Layers with the ratios d/fa = 1 and = 2 as well as the half-space are investigated.
For this squat structure, the shape of the fundamental mode of the soil-structure
system will consist of a predominantly translational motion. The cutoff frequency

Z lutug+h ¢l
lugl
[ Iy
— HALFSPACE
0.4 - b) c)
—— HALFSPACE
03{ =——=-—d/a=2
........ d/o = 1
0.2 4
0.1
0.054
o ;g 0 T T T T T VIT1T T T T T T TT71T >§
0.4 o1 05 5 10

Figure 9-2 Equivalent properties and harmonic response (& = 0.67, 7 = 3,
my,=1,=0,v=0.33,{ = 0.025, {, = 0.05) varying depth of layer. (a) Natural
frequency; (b) damping; (c) displacement of mass relative to free field.
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above which radiation damping occurs will thus be determined essentially by
the fundamental frequency of the site in the horizontal and not in the vertical
direction, as would be the case if rocking were to dominate. The properties of
the equivalent one-degree-of-freedom system &/c, and { are plotted as a function
of § for the three sites in Fig. 9-2a and b. The ratio @/, depends only weakly
on the site. For a negligible effect of the soil-structure interaction (5 = 0.1),
all curves for { start at the structural-damping ratio { = 0.025. For the half-
space (solid line),  increases significantly for increasing 5, as the effect of the
large amount of radiation damping (predominantly in the horizontal direction)
applies throughout the range. For the other extreme site, d/a = 1 (dotted line),
radiation damping is never activated, as @ is always smaller than the horizontal
fixed-base frequency of the site. For a significant soil-structure interaction effect,
the ratio { converges essentially to the material-damping ratio of the soil
¢, = 0.05. For the intermediate site d/a = 2 (dashed line), a transmission occurs.
For a large c, (5 small), & is smaller than the fundamental frequency of the site,
and thus no radiation damping occurs. Decreasing ¢, (and keeping all other
parameters constant), which corresponds to increasing §, will lead to a smaller
decrease in @ (Fig. 9-2a) than in the fundamental frequency of the site (which is
proportional to c,). In the range of 5 from 0.5 to 1, these two frequencies will be
very similar, For smaller c, (and thus larger §), radiation damping will arise with
a tendency to reach a value approaching that of the half-space. The amplitude
of the peak-structural distortion |u| (Fig. 3-18) occurring at @ = & is inversely
proportional to Z, the factor being equal to u,®?*/(2w?). In Fig. 9-2c, the ampli-
tude of the maximum displacement of the mass relative to the free field |u + ,
-+ h|/|u,| for harmonic excitation is plotted versus § for the three sites. The
conclusions reached discussing the curves { in Fig. 9-2b are confirmed. The
influence of the depth d of the layer on the equivalent damping ratio { (assuming
all other properties of the soil and of the structure are unchanged) is thus
extremely important. This represents probably the most dangerous pitfall
encountered in actual practice, where a layered half-space is often present, which
makes it very difficult to calculate a reliable, but not overly conservative, equiva-
lent damping ratio. The strong influence of d/a on the structural response is also
visible for a transient excitation, although to a somewhat lesser extent. For the
artificial time history (Fig. 3-17a), normalized to 0.1g, the maximum values of
the structural distortion u,,, and of the displacement of the mass relative to the
free field (4 + u, + h¢)m.x are plotted for the same three sites:and for a frequency
w,/2m = 4 of the fixed-base structure in Fig. 9-3. As expected, the responses
for the half-space and for the layer with d/a = 2 are similar for § > 1 and sig-
nificantly smaller than that of the layer with d/a = 1.

9.1.4 Mass of Base

The influence of a mass m, and of a mass moment of inertia /, (associated
with the base) on the equivalent parameters and on the structural response is
examined next. For reasonable values of these additional parameters, the results
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Figure 9-3 Maximum response, artificial time history (h =0.67, m=3,
my =1,=0, w/2n =4, v=0.33, { =0.025, {; = 0.05) varying depth of
layer. (a) Structural distortion; (b) displacement of mass relative to free field.

are hardly changed. For instance, for m,/m = 0.2 and I,/(h*m) = 0.05, the
corresponding curves coincide completely from a practical point of view with
those shown in Fig. 9-2 for m, = I, = 0 (comparison not shown).

9.1.5 Bridge Structure

The range of parameters selected up to now in this section (and also in
Section 3.4.5) corresponds to that encountered in nuclear-power plants, where
stiff massive structures occur. Other types of structures also show significant
soil-structure interaction effects. There are, however, also many types of struc-
tures where certain aspects of soil-structure interaction can be neglected,
resulting in much simpler structural behavior. As an example, the continuous
bridge shown in Fig. 3-19 is investigated. For this type of structure, the slender-
ness ratio # is large (> 3). In this case, the properties of the equivalent one-
degree-of-freedom system depend only weakly on A, as is visible in Fig. 3-20.
The response will depend strongly on the material-damping ratios { and e
as well as on § and /7. As the characteristic length a of the basemat is small and
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Figure 9-4 Equivalent properties and harmonic response (k = 5, m, = I, = 0,
v =033, {=0.025 {, =0.05 varying mass ratio. (a) Natural frequency;
(b) damping; (c) displacement of mass relative to free field.

the structure is flexible (small value of w,), the dimensionless frequency a, = (@/
w,)w,alc, will also be small. As the rocking motion dominates for such tall
structures, the corresponding radiation damping evaluated for a small a, (even
for a half-space) will be negligible. This is confirmed in Fig. 9-4, where the
equivalent properties and the amplitude of the displacement of the mass relative
to the free field of typical bridge structures founded on a half-space are plotted
for the specified parameters. The importance of accurately determining {, is
accentuated. For the artificial time history normalized to 0.1g, the maximum
structural distortion and displacement of the mass relative to the free field are
plotted in Fig. 9-5, varying the fixed-base frequency in the range applicable to
bridge structures. The structural distortion u.,, again decreases for increasing
§, the decrease being more pronounced for the more flexible structure. The value
(u + u, + hd)m.x also increases, but only for the stiffest structure examined
(w,/2r = 2 Hz) as is the case for the stiffer structures examined in Figs. 9-3 and
3-23. For the more flexible structures, however, the displacement of the mass
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Figure 9-5 Maximum response, artificial time history Gh=5m=5m=1,
=0, v = 0.33, { = 0.025, {, = 0.05) varying fixed-base frequency. (a) Struc-
tural distortion; (b) displacement of mass relative to free field.

relative to the free field decreases for increasing § (Fig. 9-5b), as is the case for the
harmonic response (Fig. 9-4c). This is a consequence of the dominant-frequency
content of the time history apparent in the shape of the response spectrum
compared to the natural frequency of the structure-soil system.

9.1.6 Second Mode

Finally, the influence of soil-structure interaction on the response of the
second mode is examined. The corresponding model is shown in Fig. 9-6. The
subscript 1 is added to all variables associated with the fundamental mode, for
which the dimensionless parameters introduced earlier are defined. In addition,
0,,/®,;, my/m,, and h,/h, have to be specified, assuming the same structural-
material damping for the first and second modes. The base shears corresponding
to the first and second modes are denoted as H, and H,, respectively. The ratio
| Haax — Hy max /| Haex | TEPTESENLS the relative contribution of the second mode
to the total base shear, where Hy,, represents the maximum value of H, + H,.
This ratio is plotted for the artificial time history in Fig. 9-7 as a function of the
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Figure 9-7 Relative contribution of second mode to total base shear (k = 1,
m= 3, vy = 0.33, C = 0.025, Ca = 0.05, (0_\-2/(0;1 = 3, mz/m1 = 0.25, hz/hl
= 0.3) with and without soil-structure interaction.

fixed-base frequency of the fundamental mode w,,/2z for 5§ = 0 (no soil-struc-
ture interaction) and § = 1. The other parameters are specified in the caption.
As expected, the contribution of the second mode in the lower-frequency range
is significant. (For the overturning moment, the contribution of the second
mode to the total response is smaller than for the base shear.) Comparing the
results for § = 1 to those for § = 0 leads to a nonuniform tendency, which is so
often the case when discussing the effects of soil-structure interaction. Sweeping
generalizations regarding its influence are dangerous!

9.2 EFFECTS OF HORIZONTALLY PROPAGATING WAVES

Inclined body waves and surface waves propagate horizontally across the site.
The corresponding apparent velocity c, is a function of the phase velocity ¢
(Eq. 6.6). The latter follows from the wave velocity (c* or c*) and from the angle
of incidence (yWsu, ¥sv, or we) for body waves (Egs. 5.93 and 5.126) and, for
surface waves, from the eigenvalue problem (Section 6.2.3). In the latter case, ¢
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is, in general, a function of w. The apparent velocity can be used to classify the
nature of the motion, as discussed in point 9 of the Summary of Chapter 6.
The amplitudes of the horizontal and vertical components of the motion and
the phase angle between them are thereby determined.

The effect of the horizontally propagating waves on the seismic loading is
addressed qualitatively for the three components of the free-field motion in
Section 4.2 (Figs. 4-3 and 4-4) and in Chapter 6 (Figs. 6-28, 6-52, 6-69, 6-70,
6-78, and 6-79). For a structure with a rigid base, it is meaningful to describe
the seismic-input motion acting on the structure using the so-called scattered
motion {#f}, which is equal to that of kinematic interaction {u}} (Eq. 3.29b).
For a surface structure with a circular rigid basemat, the wave effects can essen-
tially be characterized by the ratio wa/c,, where a is the radius of the basemat.
The out-of-plane component of the free-field motion leads, for relaxed contact,
to a translational component with an amplitude v% and to a torsional component
with an amplitude p¢. The in-plane motion results in two translational compo-
nents with amplitudes «8 and w# and in a rocking component with an amplitude
B2. The amplitudes as a function of wa/c, are examined in Section 7.4.3 (Figs.
7-30 and 7-31).

The free-field motion is commonly postulated to consist only of vertically
incident body waves. To determine the influence of this assumption, the response
of simple structures of increasing complexity to different types of horizontally
propagating waves is systematically investigated. Extreme cases are also exam-
ined to overemphasize the effects studied. Comparisons with the results of the
same structures, calculated for the standard vertically incident body waves of
the same amplitudes, are performed.

The structures with a rigid basemat of radius a are founded on the surface
of a homogeneous half-space (Fig. 9-8). Its Poisson’s ratio v is selected as 0.33.

Figure 9-8 Nomenclature of circular |

rigid basemat excited by horizontally gy- ‘p.,sv_'R.

propagating waves (Ref. [4]). WAVE  WAVE

The hysteretic damping ratio of the soil {, equals 0.05. The corresponding
dynamic-stiffness coefficients of the soil are plotted in Fig. 7-20. The waves
propagate horizontally in the x-direction. The nomenclature of the displacements
is defined in Fig. 9-8. The amplitudes of the displacement in the horizontal
direction and of the rotation around the x-axis are denoted as v and ¢,, respec-
tively. Harmonic excitation and an earthquake acceleration-time history as a
transient are examined. The artificial 30-s time history that follows the U.S.
NRC response spectrum (Fig. 3-17a) is used.
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9.2.1 Investigated Structures

For the structures investigated, the dimensionless parameters (for har-
monic excitation), which are varied in this study, and the symbols used later for
the structures are listed in Fig. 9-9. The simplest structure analyzed is the
circular massless basemat of radius a. It represents the model used for kinematic
interaction. Its response is thus equal to the seismic input used for more complex
structures in the inertial interaction step. The response of this basemat depends,
for selected v and {,, on the dimensionless frequency a, = wa/c, for harmonic
excitation. To be able to determine the response at a specific level, the massless
structure of height 4 is also examined. The slenderness ratio 4 = A/aisintroduced
as an additional parameter. For the basemat with mass m, the mass ratio m
= mf(pa®) is specified together with g, (p = mass density of the elastic half-
space). A translational mass—spring system modeling the simple structure (shown
in Fig. 9-1) connected to a basemat with mass m, is also analyzed. The ratio of
this mass to that of the mass point m,/m equals 0.33. To calculate the mass
moment of inertia I,, the mass is assumed to be evenly distributed over the circu-
lar basemat. The stiffness ratio of the structure and of the soil § = w,4/c, and
the hysteretic damping ratio { of the translational mass—spring system are

DIMENSIONLESS

TYPE OF STRUCTURE SYMBOL PARAMETERS
z fy
MASSLESS BASEMAT X Qo
—~

4 * / y
MASSLESS STRUCTURE . lah
: —~

BASEMAT WITH MASS « | Qo,Mm
_’

z4
TRANSLATIONAL fy
MASS-SPRING SYSTEM o, hM35L
CONNECTED TO X oyl 1,111 ,9,
BASEMAT WITH MASS -

z y
TRANSLATIONAL AND 7‘
TORSIONAL ; .
MASS-SPRING SYSTEMS M.E.LE
CONNECTED TO x| GorMMLS,C,Sy
BASEMAT WITH MASS —

Figure 9-9 Investigated structures (Ref. [4]).
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introduced as additional parameters, where o, denotes the translational fixed-
base frequency. To be able to account for the torsional motion of the structure
for SH-waves, the translational and torsional mass-spring systems connected
to a basemat with mass are finally introduced. In addition to the structural
configuration present in the translational mass—spring system connected to a
basemat with mass, a torsional degree of freedom of the structure consistent
with the same mass distribution is included. The same damping ratio { is assumed
for the torsional motion. The only additional dimensionless parameter consists
of 5, = wyh/c,, where w, denotes the fixed-base torsional frequency. For a
transient excitation, g, is replaced by a/c, for all structures.

The (total) response for the standard assumption of vertically incident
waves is denoted by a superscript 90°. The superscript oo indicates that the
apparent velocity c, is infinite. The superscript f denotes the free-field motion.
The amplitudes of the corresponding displacements in the three directions are
denoted as v’ (= uf), v* (= uf), and w’ (= uf).

9.2.2 Inclined SH-Waves

The effect of the out-of-plane motion caused by SH-waves is addressed
first. The total displacement amplitude | »*| for harmonic excitation is plotted in
Fig. 9-10 versus a, in three points of the massless basemat varying ysu. For
increasing a, and decreasing ysy, the response is diminished and is always less
than that for vertical incidence. For a, — 0 the phase angle ¢ (by which the
torsional rotation ¢, = p% lags behind the translational v* = v%) equals 90°.
For larger a,, g increases, always causing a larger response in point 2 (facing the
arriving wave) than in point 3. For a, > 4, ¢ is approximately 180°. The response
of this massless basemat for horizontally propagating SH-waves is always
smaller than that based on the standard assumption of vertical incidence.

Figure 9-10 Harmonic response of massless basemat versus dimensionless
frequency, SH-wave (Ref, [4]).
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Figure 9-11 Harmonic response of basemat with mass versus dimensionless
frequency, SH-wave (Ref. [4]).

For a basemat with a mass ratio m = 3, the response ratio |v*|/|¢*"] is
plotted for a horizontally propagating SH-wave versus ¢, in Fig. 9-11. In contrast
to the massless basemat (7 = 0), the response ratio in points 2 and 3 exceeds
the value 1 quite drastically. As the radiation damping of the torsional mode is
less than that of the translational, a large amplification arises for intermediate
a,. It is worthwhile to examine the response characteristics for increasing a,.
For small q,, the resulting torsional motion ¢ lags behind the center’s transla-
tional »* by approximately 90°, as discussed above for the massless basemat. For
increasing a,, the fundamental frequency of the translational motion is reached
first (@, ~ 1.2), resulting in a change of phase of ~90° for ¢*. Combined with
that of the input, v* and ¢, are nearly in phase, so that their motions are added
in point 3 (dashed line) and subtracted in point 2 (solid line). The dip in the solid
line is clearly visible. The response in point 2 is even smaller than that in the
center (point 1) in this range of a,. For larger a,, the fundamental frequency of
the torsional motion occurs (@, ~ 1.6), resulting in a phase change of ~90°
for ¢;. For even larger a,, the phase difference of v* and ¢ is the same as that for
the massless basemat. The ratio of the maximum acceleration (¥%,,/555,) for
the earthquake excitation is shown in Fig. 9-12a versus the angle of incidence
wsu of the SH-wave and in Fig. 9-12b as a function of the mass ratio m for the
specified parameters. As most of the earthquake transient corresponds to small
and intermediate a,, for which the response ratio for harmonic excitation in
point 3 is larger than in point 2 (Fig. 9-11), the response in the basemat’s point
facing away from the earthquake thus exceeds that in the point facing toward
the arriving wave for all parameters examined (Fig. 9-12). It is, in general, even
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larger than that based on vertically incident waves. It should be remembered,
however, that for most structures, m is < 3, except for tall structures, which can-
not be modeled as a basemat with mass anyway. For many sites, the waves can
travel in all directions. Thus the largest values (point 3) have to be used for
design.

Finally, the translational and torsional mass-spring system connected to a
basemat with mass (Fig. 9-9) is examined for a horizontally propagating SH-
wave selecting the following parameters: h=1,m=22575=5,=2.26,and
¢ = 0.07. The steady-state torsional rotation |ag | (divided by |v7|) is plotted
versus a, in Fig. 9-13. A large amplification arises in both points at the funda-
mental torsional frequency of the structure-soil system. For point 1, located on
the basemat, the total resulting response shows a significant dip at the fixed-base
torsional frequency. It would be zero for { = 0. This effect is well known from
the steady-state response of a system consisting of two spring-masses in series.
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Figure 9-13 Harmonic response of

translational and torsional mass-spring

systems connected to basemat with mass
go Versus gimensionless frequency, SH-
—» wave (h=10, m=225 §=35;=
10 2.26, { = 0.07) (Ref. [4)).

Y 4y T T

The same structure is analyzed for the earthquake motion normalized to 0.2g.
Selecting a/c, = 0.06s, the fixed-base frequencies of the translational and of the
torsional motion both equal 6 Hz. Total acceleration-response spectra are cal-
culated for the SH-wave propagating horizontally and for vertical incidence.
This in-structure horizontal-response spectrum at the elevation # and radius
a (Fig. 9-14) is typical. Because of the small filtering effect at the translational-
rocking fundamental frequency of the structure-soil system, the corresponding
peak is only somewhat reduced for sy = 0, while an additional strong peak at
the torsional fundamental frequency (Fig. 9-13) appears.

3.

2,

TOTAL ACCELERATION [g]

°3 5 100 2 3 % 10+ 2
UNDAMPED NATURAL FREQUENCY [Hz]

Figure 9-14 In-structure response spectra (1% damping) translational and
torsional mass-spring systems connected to basemat with mass, SH-wave, point
3 (afes =0.06s, =10, m=225 w28 = wy/2n = 6,0Hz, { = 0.07)
(Ref. [4]).
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Love waves are not investigated, as, first, they do not exist for a half-space,
and second, if a layered half-space were introduced, no new aspects would occur.

9.2.3 Inclined P- and SV-Waves

The in-plane body waves are examined next. Nonvertically propagating
P- and SV-waves both generally lead to a horizontal and vertical free-field
motion #', w’. The resulting horizontal and vertical displacements of the center
of the massless basemat, u' = u% and w* = w#, for harmonic excitation are
reduced similarly as for »* = ¢ in the case of the SH-wave (see Fig. 7-30). The
induced rotational input motion, that is, the rocking rotation ¢, = f%, caused
by the propagating compenent w” (which could arise from an inclined P- or
SV-wave), is, however, approximately twice as large as ¢, = ¢ for the SH-wave.
The shape of the curves of 8% and y% as a function of a, hardly differs (Fig. 7-31).
Only the results of kinematic interaction are presented in the following. The
displacement amplitude |w*| for a propagating free-field harmonic vertical
component w' is plotted in three points of the massless basemat in Fig. 9-15.
The selected parameters c,/c, = 0.5 and = 1.0 correspond to the limiting cases
of a P- and an SV-wave, respectively, for the corresponding angle of incidence
approaching zero. The value | w*| in the center is very similar to |v*| for the SH-
wave. Actually, the two dotted curves of Fig. 9-15 coincide, from a practical
point of view, with those of Fig. 9-10. The vertical-response ratio |w'|/|w/| in
points 2 and 3 exceeds 1, because of the large rocking component B%. This is
in contrast to the response of the massless basemat for SH-waves, where hori-
zontally propagating-wave effects for harmonic excitation never dominate. As
discussed for SH-waves, the response in point 2, facing the arriving wave again
exceeds that in point 3.

[ S T B T
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Figure 9-15 Harmonic response of massless basemat versus dimensionless
frequency, vertical excitation (Ref. [4]).
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Figure 9-16 Harmonic response, P-wave (Ref. [4]). (a) Massless basemat,
vertical versus dimensionle_ss frequency; (b) massless structure, horizontal versus
dimensionless frequency (& = 1.0).

The vertical response ratio |w*|/|w®®| of the massless basemat for prop-
agating P-waves for harmonic excitation is specified in Fig. 9-16a. Of the many
angles of incidence that were investigated, yp, = 66.40° results in the largest
response ratio for a, > 3. As expected from the free-field response (Fig. 6-5),
changing y» from 90° does not lead to an excessive increase in the vertical
response. The horizontal response for P-waves is presented for the massless
structure (A = 1) in Fig. 9-16b. The two selected angles of incidence lead to the
largest ratios. Significant horizontal response does arise.

In Fig. 9-17a, the horizontal response ratio |u'|/|u®®| of the massless
structure (2 = 1) for SV-waves is examined. Decreasing sy from 90° at first
leads to a ratio < 1, as w” is quite small (Fig. 6-7). The large ratio that results,
even in the center, in point 1, when y., = 60° is approached, is caused by the
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Figure 9-17 Harmonic response, SV-wave (Ref. [4]). (a) Massless structure,
horizontal versus dimensionless frequency (2 = 1.0); (b) massless basemat,
vertical versus dimensionless frequency.

strong increase in u”. For ysy = 56°, u” and w” are significant, but as this motion
is prograde, the horizontal component from the rocking in point 2 is approxi-
mately out of phase (for small a,) with that arising from the horizontal compo-
nent, resulting in a diminished response. For ygy < 45°, where the free-field
motion is retrograde, the two horizontal components are added, as is discussed
in detail later in connection with R-waves (Section 9.2.4). But as v/ is small,
this effect is not clearly visible. The vertical response for SV-waves is represented
for the massless basemat in Fig. 9-17b. For 20° < ysy < 60°, w” is considerable,
resulting in a substantial w* (i.e., ysv = 53°).
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Many possibilities exist of combining P- and SV-waves to create specified,
statistically independent horizontal and vertical free-field motions. Even selecting
the same apparent velocity for the P- and SV-waves, which does not distort the
earthquake motion as it propagates, many quite arbitrary assumptions have
to be made. Two possibilities are discussed, and the corresponding responses of
a massless structure are compared to that based on the standard assumption of
vertically incident waves. In the first procedure, a horizontal and a vertical
earthquake motion are selected, where wi,, = 0.67i%,,. For the horizontal-
acceleration time history, the record of Fig. 3-17a is chosen. The vertical earth-
quake motion is generated from the latter by assigning a random phase angle to
each Fourier term and by scaling the resulting motion appropriately. The
motions of the SV- and P-waves, both vertically incident, are associated with
the horizontal and vertical earthquake records, respectively. This determines the
(complex) amplitudes of the two body waves. With these fixed amplitudes,
different angles of incidence for the P-wave are selected. As the apparent velocity
of both body waves is the same, yy, of the SV-wave follows. This method will
result in different horizontal and vertical free-field motions for each yp. The
horizontal response ratios (=ii,,,/ii5,,) for the massless structure (4 = 1) versus
alc,, selecting y» = 30°, are plotted in Fig. 9-18. The corresponding curves for
wr = 60° are very similar. In the second procedure, the horizontal motion, for
which again the record of Fig. 3-17a is chosen, remains unchanged when varying
the angles of incidence. For each selected yy, the (complex) amplitudes of the
SV- and P-waves are determined from the horizontal motion by postulating that
the ratio of the (real) magnitudes of the amplitudes of the P- and SV-waves for
each frequency equals 0.67 and by choosing a random phase angle between
the amplitudes of the two body waves. The vertical motion thus depends on .
In Fig. 9-19, the horizontal ratios ii%,,,/ii2%, of the same massless structure versus
ajc, for yp = 30° are shown as solid and dotted lines. The most straightforward
procedure, which does not determine the individual contributions of the two
waves, is to assume that the prescribed horizontal and vertical motions propa-
gate horizontally with the same apparent velocity, consistent with a selected angle

K r4
1 Umox ’ y

20-| Umax 4, - 300

1.0

e, . Figure 9-18 Maximum acceleration of
I | IR massless structure versus radius/shear-
17 — 2 wave velocity, vertically incident SV-

and P-waves associated with horizontal
i ] . and vertical earthquakes, respectively
o 0410 020 o030 1s1 (A = 1.0) (Ref. [4]).
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of incidence. For comparison, the same response ratio, with ¢, corresponding
to yp = 30°, is also plotted as a dashed line in Fig. 9-19. The horizontal and
vertical earthquake motions are used, as determined in the first procedure for
vertical incidence. It can be concluded from Figs. 9-18 and 9-19 that the hori-
zontally propagating wave effects are quite small, as the apparent velocities for
inclined body waves are large. It should be remembered, however, that the angle
of incidence of the SV-wave is selected to be larger than y.,, in order to be able
to generate a P-wave with the same apparent velocity.

9.2.4 Rayleigh Waves

Finally, Rayleigh waves are addressed. The characteristics of these surface
waves of a half-space are discussed in Section 6.3. The retrograde motion in
a specific point as a function of time is shown in Fig. 6-6. Another representation
showing the wave at a specific time along the horizontal axis is contained in
Fig. 9-20. The horizontal and vertical components are denoted as ¥ and w”.
For the uniformly damped half-space, w” lags behind »* by a phase angle of 90°
for the coordinate system selected. This retrograde motion causes the horizontal
displacement from the horizontal component of the wave u* to be in phase with

NN

N N

v

wf ﬂ%"
\//\@" X
/ \Y

Figure 9-20 Addition of horizontal
response, R-wave (Ref. [4]).
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Figure 9-21 Harmonic response of massless structure versus dimensionless
frequency, R-wave (4 = 1.0) (Ref. [4]).

the horizontal displacement #* from the rocking-seismic input £, which arises
from the vertical component. This effect of kinematic interaction is also visible
in Fig. 9-21, where the horizontal displacement amplitude || is plotted for
points located on the massless structure (# = 1) for harmonic excitation. For
point 1 in the center of the basemat, the response ratio is strongly reduced for
increasing a,. This dotted curve is similar to that corresponding to a horizontally
propagating SH-wave (Fig. 9-10, dotted line for sy = 0). For point 2, the con-
tribution to #* arising from u”, u*, and that from w”, u?, are shown separately.
As|w'| ~ 1.5|u”|, |u*|is considerable larger than |u#*|. For a, < 3, #* and u® are
in phase, resulting in a response ratio that reaches 2.5. For larger a,, 8¢ and u£
are no longer 90° out of phase, as is observed in the case of the discussed SH-
wave. This results in #* and u* no longer being in phase. The response ratio is < 1
for a, > 4, in contrast to the P-wave (Fig. 9-16b, y» = 66.40°). This follows
from the much larger apparent velocity of the inclined P-wave compared to the
corresponding value of the R-wave. In Fig. 9-22, the maximum horizontal accel-
eration ii‘,,, versus a/c, in two points of the same massless structure is plotted
for the earthquake excitation of Fig. 3-17a as solid and dotted lines for an R-
wave. Over a wide range of a/c,, the response ratio exceeds 2 for this transient
excitation, which confirms the steady-state results of Fig. 9-21. For comparison,
aretrograde wave, but with |w/| = |4/, and a prograde wave with the same free-
field amplitude ratio, both propagating at the same apparent velocity, are also
examined. These two additional waves violate the equations of an elastic
half-space. However, for a layered medium, surface waves can bear a certain
resemblance with these two waves, although the wave pattern is much more
complicated. Whereas for the retrograde wave (dashed line) horizontally propa-
gating wave effects, although smaller, are still important, this is no longer the
case for the prograde wave (dashed-dotted line).

The response ratios i, /i, and Wk, /w2, for the translational mass—
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Figure 922 Maximum acceleration of massless structure versus radius/shear-
wave velocity, surface waves as transient (A = 1.0) (Ref. [4]).

spring system connected to a basemat with mass are plotted versus a/c, (Fig.
9-23a), versus m (Fig. 9-23b), and versus the fixed-base frequency w,/2n (Fig.
9-23c) for the specified parameters. The damping ratio { = 0.07 is selected. The
values #%,, and é*,, represent the maximum horizontal acceleration (taking
kinematic and inertial interactions into account) caused by w/ and i/, respec-
tively. The ratios of the horizontal and vertical accelerations in point 1 at the
base are, in general, < 1. In this point, &2, and i*,, appear to be combined
in #éi*,,, as if they were arising from statistically independent motions. The ratio
of the horizontal acceleration in point 2 averages 2.5 for a substantial param-
eter variation. The maxima ii%,, and #*%,, arise at the same time. R-waves
dominate at higher elevations of the structure.
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Figure 9-23 Maximum acceleration, translational mass-spring system con-
nected to basemat with mass, R-wave as transient (Ref. [4]). (a) Versus
radius/shear-wave velocity (b = 1.0, m = 0.75, w,/2r = 4.0 Hz, { = 0.07);
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Figure 9-23 (Continued) (b) versus mass ratio (a/c; = 0.10's, i = 1.0, w,/2x
= 4,0 Hz, { = 0.07); (c) versus fixed-base frequency (a/c, = 0.10s, 4 = 1.0,

m=0.75, { = 0.07).

9.3 EXAMPLES FROM ACTUAL PRACTICE

9.3.1 Through-Soil Coupling of Reactor Building
and of Reactor-Auxiliary and Fuel-Handling Building

As the first practical application, the interaction of the reactor building
through the soil with the surrounding reactor-auxiliary and fuel-handling
building is analyzed. The three-dimensional dynamic models of the two structures
for seismic loads are shown in Figs. 4-15 and 4-16. The seismic excitation consists
of two statistically independent horizontal-acceleration time histories, normal-
ized to 0.22g, and of a vertical one with a maximum value of 0.67 times that
in the horizontal direction. The layered site is discretized in Section 7.7 (Fig.
7-55). The method of substructure-mode synthesis is used to reduce the number
of dynamic degrees of freedom. Besides the 12 unknowns of the two rigid
basemats, 32 amplitudes of the mode shapes of the structures built in at their
bases are used. The fundamental frequency of the total system equals 1.9 Hz.
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TABLE 9-1 Maximum Response of Reactor Building in x-Direction

Coupled System Reactor Building Alone

Horizontal displacement (mm)

Basemat 17.8 12.0

Top 127.6 113.0
Horizontal acceleration  (g)

Basemat 0.34 0.33

Top 1.48 1.30
Base shear (GN) 0.31 0.28
Overturning moment (GNm) 12.51 10.74

The corresponding mode shape shows a strong rocking motion of the reactor
building. As discussed in connection with Fig. 7-58, the radiation damping will
not contribute to the modal damping. In Table 9-1, the reactor building’s maxi-
mum response determined from the coupled analysis is compared to that deter-
mined from examining the structure alone (i.e., without the surrounding
building). The exact location of the nodes is specified in Fig. 4-15. Taking the
through-soil coupling effect into account increases the response, especially at
higher levels of the reactor building.

The influence of the flexibility of the basemat is addressed next. The cor-
responding dynamic model is shown in Fig. 4-17. Comparing the results for the
rigid basemat with those for a thickness of 3.0 m and (as an extreme case) of
1.5m, a nonuniform tendency is observed (not shown), the effect not being
overwhelming. In a specific location, the effect can, however, be quite large. This
is, for example, visible in the in-structure response spectrum at the top of
the pressure vessel (Fig. 9-24). For a rigid basemat (solid line), the highest peak
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Figure 9-24 Horizontal in-structure response spectra (1% damping), reactor
building with flexible basemat, top pressure vessel (Ref. [4]).
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arises at 5.4 Hz, which is approximately equal to the fixed-base fundamental
frequency of the pressure vessel. The frequency at which this (second) peak
occurs is reduced to 3.8 Hz for a thickness of 3 m (dashed line). The peak at the
structure-soil system’s fundamental frequency of 1.9 Hz, which is hardly modi-
fied by the flexible basemat, becomes dominant. Introducing a thickness of
1.5 m (dotted line) results in only one peak at 1.9 Hz. Turning to horizontally
propagating waves, while the maximum response in the horizontal direction
remains nonuniform, the vertical response along the pressure vessel increases
significantly for decreasing thickness of the basemat. For a flexible basemat,
the “effective” radius and thus the self-canceling effect are reduced, resulting in
increased seismic input in the vertical direction for the pressure vessel (results
not shown).

9.3.2 Pile-Soil-Pile Interaction

As the next practical application, the seismic analysis of a reactor building
founded on piles is discussed (Fig. 9-25). Below the basemat, a strongly hori-
zontally layered compressive soil of 36 m thickness rests on bedrock (Fig. 9-26).
The pile foundation consists of 202 end-bearing piles (146 with @ = 1.30 m,
56 with @ = 1.10m) and of 88 floating piles of 15 m length (80 with & = 1.80
m, 8 with & = 1.30 m). Broad-banded design-response spectra specify the seis-
mic excitation as outcropping on the level of bedrock. The maximum acceler-
ations of the corresponding artificial time histories of duration 15 s equal 0.1g
and 0.067g in the horizontal and vertical directions, respectively. The free-field
properties of the six soil layers at the site are shown in Fig. 9-26. The shear
moduli (and the shear-wave velocities) are compatible with the strains derived
from the horizontal earthquake record, which is assumed to consist of vertically
propagating waves. The top two layers are made up of extremely soft soil. It
should also be noted that the properties of the second layer are even worse than
those of the first one. Figure 9-26 also shows the section y = 0 through
the piles. The three end-bearing piles of & = 1.30 m are denoted later as the
“center pile,” the “intermediate pile,” and the “boundary pile.” The fourth
marked pile of @ = 1.80 m will be referred to as the “floating pile.”

The reactor building with a rigid basemat is modeled with three vertical
beams introducing, in a three-dimensional analysis, a total of 198 degrees of
freedom. All piles are built in to the rigid basemat. The end-bearing piles are
assumed to be hinged at their tips. Interaction forces arise (and thus compati-
bility of the pile and soil displacements is formulated) along the axes of the piles
at the nodes located at the top of each layer. In addition, compatibility is formu-
lated for all piles at the level of the tips of the floating piles (z = —15.0 m).
Decomposing the earthquake motion into a symmetrical and an antisymmetrical
part, the dynamic model of the pile-soil system can (approximately) be reduced
to a quarter of the foundation. This results in 86 piles, for which, in a total of
556 nodes, compatibility with the neighboring soil is enforced. The resulting
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Figure 9-25 Elevation and plan view of reactor building founded on piles (Ref.

[14]).
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Figure 9-26 Free-field properties of soil layers (Ref. [14]).
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Figure 9-27 Discretized pile-soil system (Ref. [14]).

discretized pile—soil system is shown in Fig. 9-27. As the dynamic stiffness of
the pile foundation is frequency dependent, the natural frequencies of the pile-
soil-structure system have to be determined by iteration. Its fundamental
frequencies for the horizontal and vertical vibrations equal, for rigid bedrock,
2.10 Hz and 9.20 Hz, respectively. As the fundamental frequencies of the layered
site (free field) are higher (2.63 Hz in the horizontal and 12.2 Hz in the vertical
direction) than those of the pile-soil-structure system, radiation damping for
these vibrational modes with a large generalized modal load (participation
factor) will be extremely small (zero for no hysteretic damping).

For the horizontal earthquake in the x-direction, the maximum forces at
the pile heads are shown in Fig. 9-28. As can be seen from the shear forces in
the x-direction (Fig. 9-28a), the boundary pile is loaded much more heavily
(1.26 times the average) than that in the center (0.60 times the average). As
expected, all piles located on the same circle carry approximately the same load.
The floating piles of large diameter attract more shear force than would follow
from the ratio of the cross-sectional areas. The bending moments acting around
the y-axis (Fig. 9-28b) are spatially much more evenly distributed than the shear
forces. Piles of different diameters are loaded approximately proportionally to
their moments of inertia. The axial forces caused by the global overturning
moment around the y-axis are shown in Fig. 9-28c.

The following figures show the distribution of the forces and of the dis-
placements along the axes of selected piles at the time when the corresponding
value at the head reaches its maximum. For the horizontal earthquake, the
distribution of the horizontal displacements and of the bending moments hardly
depends on the location of the pile. In addition, end-bearing and floating piles
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Figure 9-28 Maximum forces at pile heads, horizontal earthquake (Ref. [14]).
(a) Shear forces; (b) bending moments; (c) axial forces.
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Figure 9-29 Maximum horizontal displacements along piles, horizontal
earthquake (Ref. [14]).

BENDING MOMENT [MN m] b) BENDING MOMENT [MN ml
O) 4.0 45 0. 45 3.0 45 6, -3 0. 3 5 9 @

A 1 1 )

------- CENTER PILE
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Figure 9-30 Maximum bending moments, horizontal earthquake (Ref. [14]).
(a) Along end-bearing piles; (b) along floating pile.

exhibit almost the same shape (Figs. 9-29 and 9-30). For the vertical earthquake,
the vertical displacement and the axial force of the boundary pile decrease more
rapidly than the corresponding values of the center pile (Fig. 9-31). Even for a
larger value of the axial force at the head, a smaller value at the tip results.
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Figure 9-31 Maximum vertical displacements and axial forces along end-bearing
piles, vertical earthquake (Ref. [14]).

9.3.3 Horizontally Propagating Waves
on Hyperbolic Cooling Tower

The seismic response of a hyperbolic cooling tower to horizontally prop-
agating waves represents an important practical problem. The dimensions of
this structure at its base are so large that even for quite large apparent velocities,
traveling-wave effects are significant. Often for a structure of this type, which
is not a high-safety class structure, only approximate dynamic-soil investigations
are performed for economical reasons. This does not allow the wave pattern,
which can occur at the site, to be calculated rigorously, as is discussed in
Sections 6.7 and 6.8. As presented in Section 9.2, certain “reasonable” wave
patterns are assumed to exist.

The dimensions of the hyperbolic cooling tower with a height of 144 m
and a diameter at the base of 117.08 m are shown in Fig. 4-13. The dynamic-
shear modulus (compatible with the strains developed for the design basis
earthquake), the density, and the Poisson’s ratio of the soil are estimated as
0.12 GPa, 2.4 Mg/m?, and 0.4, respectively. The damping ratio of the soil and
of the structure is assumed to be equal to 0.04. The design of the supporting
columns, and thus also of the lower part of the shell (edge beam) and of the
foundations, is governed even for moderate earthquake excitation by the seismic
loads instead of the wind. The tower is designed for a design-basis earthquake
with a peak horizontal ground acceleration = 0.12g. The response spectrum of
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the 10-s artificial time history for the horizontal direction closely follows that
of the U.S. NRC Regulatory Guide 1.60 for a damping ratio = 0.04 (Fig.
3-17a). Two horizontally propagating wave patterns are examined. The vertical
component, w’ (= uf), is determined from the horizontal one, #* (= uf), by
making different assumptions, which, in general, violate the laws of elasto-
dynamics. First, a retrograde motion, with |w/(w)| = |¥/(w)]| for all Fourier
terms, is selected and denoted as “retrograde.” Second, a prograde motion is
introduced, again with | w/(®)| = |u/(w) | (“prograde”). For both types of waves,
the peak vertical acceleration is approximately equal to that in the horizontal
direction. The waves are assumed to propagate in the positive x-direction. The
apparent velocity ¢, = 500 m/s is used in the calculations, which is reasonable
when considering the dispersion curves for surface waves of this site. The cor-
responding dimensionless frequency a, = wa/c, (in which a is the radius at the
foundation level of the tower and w is the fundamental frequency of the soil-
structure system 2z X 1.96 Hz) equals approximately 1.5, for which both the
translational component u# and the rocking component ¢ exhibit significant
values (Fig. 7-31). Horizontally propagating wave effects should thus become
important. For comparison, the horizontal and the vertical components of the
motion are assumed to originate from vertically incident waves (¢, = o), while
for the latter component the retrograde wave is used. In addition, the horizontal
component alone is processed, with ¢, = 500 m/s, and for ¢, = oo. The dynamic
model of the tower is discussed in Section 4.3.3. For horizontally propagating
waves, harmonics higher than the first have to be included.

Evaluating the results, it is convenient to compare the following maximum-
dynamic values: the total base shear force @, which characterizes the overall
lateral response; the maximum normal column force N,,, (tension), taken along
the circumference without deadweight (the force that governs the design of
the columns); and finally the total horizontal acceleration i at the top of the
shell at # = 180° (this acceleration acts as an indicator of local shell motions).
In Table 9-2, these three values, normalized to the corresponding ones for the
horizontal and vertical motions with vertical incidence, are presented.

Studying the effect of a horizontally propagating wave, the horizontal
component only is examined at the beginning. Deleting the vertical earthquake

TABLE 9-2 Ratios of Maximum Response

Total Shear Maximum Column  Acceleration,

Wave Pattern Force, O Force, Nmax it
Horizontal/vertical: ¢, = o 1 1 1
Horizontal: Cq = oo 1.00 0,98 0.88
Horizontal: ¢g = 500 m/s 0.59 0.76 0.59
Retrograde 1.74 1.78 1.85

Prograde 0.56 0.81 2.24
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for the case ¢, = oo reduces Ny, and, to a somewhat larger degree, ii*. When
this horizontal component propagates, the resulting self-canceling effect of the
translational input motion reduces all three response values. Since the reduction
for i’ is the same (0.59) as that for Q, the horizontal component of the prop-
agating wave does not seem to excite local shell modes. Introducing the
propagating vertical component, the retrograde waves lead, as expected, to
larger Q’s and N’s, while the prograde waves lead to smaller ones. This is also
apparent in Figs. 9-32 and 9-33, in which the first 4 s of the time history of Q,
and of the normal forces N, in the columns with positive and negative angle of
inclination @ around the circumference are plotted for that time when the
maximum value of Q occurs. The dominance of the motion in the fundamental
frequency = 1.96 Hz for all three cases is evident in Fig. 9-32. However, the
rotational component of the effective seismic input excites the local shell modes
for both the retrograde and the prograde waves, as is apparent from ii* in Table
9.2, The corresponding in-structure response spectra in the x-direction (Fig.
9-34) at the same location of the shell dramatically emphasize this fact.

lSOW—
—— LIN HOR/VERT cg= oc0a
007 —— L IN RETRO \
2 o] o LN PRO " A“ A
E ~ AR \
: e A
g VAR RN INY r-\
o AR
E Y \\l | vl
Figure 9-32 Time history of total shear 400 / ‘J
force at base (Ref. [15]). LIN denotes a
linear analysis. (In Ref. [15], nonlinear 0 4 2 3 s
behavior is also examined.) TIME t [s]
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Figure 9-33 Column forces (along circumference) corresponding to maximum
total shear force at base (Ref. [15]).
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9.3.4 Horizontally Propagating Waves on Nuclear Island
with Aseismic Bearings

Finally, the effect of horizontally propagating seismic waves on a nuclear
island, which is isolated with aseismic bearings, is investigated. A schematic
section passing through the nuclear island is shown in Fig. 9-35. All safety-
related structures of the nuclear island are founded on a common upper raft.

UPPER RAFT
NEOPRENE ' REACTOR REACTOR
PADS B FRICTION BUILDING BUILDING
: CONCRETE UNIT 1 UNIT 2
‘__l B PEDESTAL
S AUXILIARY

LOWER RAFT BUILDING

77 SOIL — CEMENT -~
M =~ g
BEDROCK

DIRECTION OF WAVE
PROPAGATION

Figure 9-35 Nuclear island on aseismic bearings (Ref. [16}).

The aseismic bearings are located between the lower and upper rafts. On top of
concrete pedestals resting on the lower raft, neoprene pads, which are flexible
in the horizontal direction only, are placed. In addition, friction plates are used
to limit the horizontal force transmitted to the structure. This results in a non-
linear isolation mechanjsm acting in the horizontal direction only. The lower
raft rests on a layer of soil cement which is on top of the layered rock site, whose
free-field response is examined in depth in Section 6.8.

Because the isolation mechanism is nonlinear, the equations of motion
have to be integrated in the time domain. As mentioned in Sections 8.1 and
8.5.2, a rigorous solution involves convolution integrals. To avoid this, the
dynamic-stiffness matrix of the soil is approximated as a frequency-independent
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spring and dashpot, as described in another context in Section 8.4.1. The equa-
tions of motion are then solved with a direct integration scheme.

As already mentioned, the nuclear island is isolated at the base in the
horizontal direction only. Because the rocking component of the seismic input
arising from the horizontally propagating waves is not isolated in this concept,
the effects of horizontally propagating waves are, in general, on a percentage
basis larger than in conventional structures. Along with the structural configura-
tion, whereby the large dimensions of the basemat are to be mentioned, the
properties of the site are of importance when evaluating wave-passage effects.
For rock sites with small material damping, the surface waves hardly decay.

The out-of-plane motion of horizontally propagating SH- and Love waves
is not analyzed, as the horizontal isolation mechanism acts also for the addi-
tional torsional-seismic input generated by these waves. A two-dimensional
model is adopted for the analysis of the soil-structure interaction caused by the
inplane motion of SV-, P-, and Rayleigh waves. The properties of the bedrock
site are specified in Table 6-5. As the structure-soil interface is selected at the top
of the soil cement (—6 m), the free-field soil profile of the site consists of the layer
of soil cement of 6 m thickness resting on layered bedrock. The horizontal and
vertical components of the control motion consist of artificial 30-s acceleration
time histories, the response spectra of which follow the U.S.-NRC Regulatory
Guide 1.60, normalized to 0.30g and 0.20g, respectively. The control point is
located at the top of the bedrock (0 m) without the presence of the soil cement.
With respect to the total site (including the layer of soil cement), the control
motion thus acts at a fictitious rock outcrop. The free-field motion at the top of
the soil cement (— 6 m) is determined for two different body-wave assumptions.
The control motion is first deconvoluted to the half-space (4120 m), resulting
in the amplitudes of the incident waves and then convoluted to the top of the
soil cement. In addition to vertically incident waves, inclined body waves are
investigated, whose angles of incidence of the P- and SV-waves y; and Wsy In
the half-space are selected as 5° and 30°, resulting in apparent velocities of 7627
m/s and 5058 m/s, respectively. The corresponding amplitudes 4, and Agy of
the incident waves in the half-space depend on both the horizontal and vertical
components of the control motion. Besides assuming these two wave patterns,
denoted later as “vertical incidence” and “inclined waves,” a wave train consisting
mainly of Rayleigh waves that results in the same motion at the top of the soil
cement as the vertically incident body waves is also investigated. For a layered
system the apparent velocity depends on the frequency. The procedure is analo-
gous to that described in detail in Section 6.8, with the site consisting in addition
of the layer of soil cement. For the first two R-modes, the dispersion curves (for
the rock site without the soil cement) are shown in Fig. 6-73. For frequencies
above 9.1 Hz, where the second R-mode starts, the horizontal and vertical
components of the motion at the top of the soil cement can be associated with
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the R-modes. For frequencies below 9.1 Hz, a P-wave with y» = 5° (apparent
velocity = 7627 m/s) is used in addition to the first R-mode. This wave pattern
is-denoted as “R- and P-waves.”

The dynamic model of the nuclear island is shown schematically in Fig.
9-36. A simple model is deliberately selected which, however, can represent the
characteristic effects arising from horizontally propagating waves. For this
purpose only three buildings are included in the two-dimensional model. The
structures are modeled with beams and lumped masses. The upper raft consists
of three rigid sections connected by two flexible parts. The lower raft is assumed
to be flexible over the whole length. Both rafts are rigid in their plane. Each row
of the aseismic bearings in the third dimension is modeled as a discrete element
representing the horizontal and vertical flexibilities of the neoprene pads and
the friction plates. A total of 25 elements arise. The pads are designed to exhibit
a horizontal stiffness which results in a horizontal frequency = 0.9 Hz of the
total system, assuming the upper raft and the structures to be rigid and the lower
raft fixed. The coefficient of friction equals 0.15. The lower raft is founded on the
layer of soil cement of 6 m thickness resting on bedrock. The latter is modeled
with 10 homogeneous layers which rest on a homogeneous half-space (at a depth
of 120 m). The interface of the lower raft and the soil is discretized with 25
substrips analogously to the elements modeling the aseismic bearings. The
(coupled) spring and dashpot coefficients of the soil are evaluated at 9 Hz. Taking
the constraints imposed by the rigid connections into account, the total dynamic
model has 94 dynamic degrees of freedom.

The maximum total accelerations are shown in Table 9-3 for the nuclear
island with neoprene pads without and with friction plates for the various
wave patterns. For vertical incidence the favorable influence of the neoprene
pads on the horizontal response leads to a small amplification with height.
Adding friction plates reduces the horizontal accelerations even further. The
differences in the horizontal response of the two reactor buildings for vertical
incidence are small. For the horizontally propagating R- and P-waves, the
rotational seismic input results in an increase of the horizontal response through-
out the structure. The inclined waves also lead to a larger horizontal response
compared to that for vertical incidence but, in general, less than for R- and
P-waves.

In-structure response spectra for the nuclear island with neoprene pads but
without friction plates are presented in Fig. 9-37. The results for R- and P-waves
are compared to those for vertical incidence. In the horizontal direction the peak
at the frequency 0.89 Hz of the first mode is, as expected, dominant. The other
peaks can also be associated with the frequencies of the higher modes. The
peaks are more pronounced for the horizontally propagating wave than for
vertical incidence. For the nuclear island with the complete aseismic bearings,
the results are similar (not shown).



oico
00¢°0
yeeo

SLTO
LSTO
LOE'0
e’o
LEEO
861°0

$87°0
$6C°0
£0£°0

697°0
$0€’0
92e’0
TIeo
Sro
681°0

°0€°0
¥8T°0
10€°0

sT0
6LT°0
$$T0
192°0
%0
981°0

¥8CT°0
S6T°0
£0e’0

98¢°0
L6E0
1§¥°0
8050
87570
8£€°0

0¢e0
¥8C°0
10£°0

0I€0
08¢°0
§s¢°0
69¢°0
88¢°0
P0€’0

Suipiing
Arenixne jjer pddn 0u3)
7 nun e zoddn 101u9)
1 nun jjer saddn 1ua)
[BOIIDA
guipying Arerjixne dog,
Z 3un arnonys feurdur doy,
T nun 3uIp[ing patys doL
[ 1un axjonns fewraur dog,
I ytun Surpjmng pjays doy,
1jer 1addny
[e1uozZIIoH

SOABA\ PauUIdUT

soAeM-d pue -

90UQPIOU] [BDIHIA

soABM-J pue -y

30USPIOU] [EOTIOA

$O1e|d UONOLLT YIM

$aje[d UOTIOLLY INOYNM

(8) UonBIIIIIY [€J0], WNIXBIA

€6 H1dV.L

440



Sec. 9.4 Concluding Remarks a4

10.00

K'\z
R- AND P-WARVES
—-—- VERTICAL INCIDENCE

.01 { IIiIHII\/lllIlIII 1 1 L 11Q]

.4 1.0 10.0 100.0
UNDAMPED NATURAL FREQUENCY [Hz]

PSEUDQ RELATIVE VELOCITY [m/s]

Figure 9-37 Horizontal in-structure response spectra (2% damping), nuclear
island without friction plates; top of auxiliary building (Ref. [16]).

9.4 CONCLUDING REMARKS
9.4.1 Need for Adequate Consideration

Soil-structure interaction generally represents an important effect which
has to be considered and evaluated properly. For loads applied directly to the
structure (e.g., occurring from machine vibration), this is not disputed. For
seismic excitation, the importance of the properly evaluated free-field motion
(Chapter 6) is also generally acknowledged. The influence of the other part,
that of the actual interaction, is more controversial. It can be small in certain
cases. This applies, for example, for the bridges examined in Section 9.1.5,
especially if the damping ratio of the structure is similar to-that of the soil. But
the seismic-design provisions applicable to building structures formulated by
the Applied Technology Council (“Tentative Provisions for the Development
of Seismic Regulations for Buildings,” ATC-3-06 Report, Applied Technology
Council, Palo Alto, California, June 1978) contain provisions for flexibly
supported structures. Even in the simplest possible approach to seismic analysis,
the total equivalent static-lateral force (base shear) can be reduced considering
soil-structure interaction. The permissible reduction in base shear is allowed
to reach 30 9] of the value of the base shear determined for the fixed-base struc-
ture. The concepts that lead to the equation of the reduction in base shear in
these provisions are the same as those discussed in Section 3.4. The change
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from the fixed-base frequency w, to the fundamental frequency of the structure-
soil system @ and the corresponding modification of the damping ratios from §
to { are taken into account. The trend that soil-structure interaction affects the
higher modes less in some cases is also considered. The fact that design provi-
sions for soil-structure interaction exist demonstrates that, even for everyday
building structures, the effect of the actual interaction part is recognized to be
important and cannot, in general, be neglected.

For massive stiff structures founded on flexible soil, the actual interaction
effects will be very large. This applies, for example, for nuclear power plants and
certain off-shore structures. It must also be recognized that this type of structure
contains sensitive mechanical and electronic equipment which also has to be
designed for seismic excitation to remain operational during the design earth-
quake. In some cases, for example, for the relative displacements between two
adjacent structures (which is important for the analysis of piping running between
the two structures), neglecting the actual-interaction analysis can lead to a
response which is too small. In most cases, however, taking soil-structure inter-
action into account will lead to a significant reduction of the seismic response.
Neglecting this favorable effect is economically inadmissible. In certain extreme
circumstances, only the use of this reduction will enable the design of the
structure at all without changing its basic layout. Neglecting the effect of
interaction and considering all the other (unquantified) conservatisms introduced
at the other stages of seismic analysis can lead to an overly conservative design
with respect to the earthquake hazard. In some cases, this will be at the expense
of normal operating conditions (e.g., temperature effects) and of other extreme
loading conditions arising from postulated accidents.

9.4.2 Modeling Aspects

The following features, which can be adequately modeled using the pro-
cedures discussed in this text, influence significantly the results of a soil-structure
interaction analysis:

Layering of site. For a site approaching a half-space, radiation of energy
will occur for all frequencies, while for a site with a significantly stiffer
bedrock this will not occur for frequencies below the fundamental fre-
quency of the layers with a finite depth.

Embedment. Even for vertically incident S-waves, the effective seismic
input will consist of a translational component (reduced compared to that
applicable for a surface structure) and a rocking component. The spring
and damping coefficients are significantly increased. In general, the
response for an embedded structure is smaller than that for the same
structure resting on the surface.

Flexibility of basemat. Besides reducing the spring coefficients for the out-
of-plane motion of the basemat (i.e., in the vertical and the rocking
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directions), the damping coefficients become smaller over the whole
frequency range, indicating that a flexible basemat will radiate energy less
efficiently than a rigid one does.

Through-soil coupling of neighboring structures.
Fully three-dimensional representation, if applicable.

General seismic environment, consisting of vertically incident and inclined
body waves and surface waves.

The most important limitations are as follows:

Horizontal layering. An irregular soil region can, however, be selected
adjacent to the structure.

(Quasi)-linear soil model. The soil’s elastic moduli and damping coefficients,
which can be selected to be compatible with the strains reached during the
excitation, can vary with depth. The next step in the analysis of soil-
structure interaction will consist of developing methods to analyze truly
nonlinear material behavior in the near field (structure and surrounding
soil), while the far field of the unbounded soil will be assumed to remain
linearly elastic with material damping. This will allow local nonlinear
effects to be modeled appropriately, such as the partial uplift of the
basemat, the separation occurring between the walls of the base and the
neighboring soil in the case of embedded structures, and highly nonlinear
soil behavior arising adjacent to the basemat.

The many uncertainties especially associated with the modeling of the soil and
the seismic environment do not destroy the confidence placed in the design of
a structure and of the equipment located within, as all parameters are varied
extensively. Typically, equipment is designed using an in-structure response
spectrum. The location of the peaks will coincide with the first few natural
frequencies of the structure-soil system and will thus shift according to the
stiffness of the soil. Varying the soil properties and considering that the design-
response spectrum is amplified almost uniformly throughout the range of
frequencies of interest, the peaks will extend over a significant band of frequency.
The exact values of the natural frequencies of the components built in at their
bases are thus not so important for their designs. The values of the peaks of these
broadened spectra will depend on the ratio of structural damping and of material
and radiation damping of the soil, and will thus vary only within limits.

9.4.3 Recorded Field Performance

For a long time it has been known that structures founded on soft soil are
affected much more by an earthquake than those resting on rock. This is a
consequence of the influence of the local soil conditions on the characteristics
of the seismic motion at the surface (i.e., on the free-field response).
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Actual recorded motions on various soils measured during the 1957 San
Francisco earthquake were used for the seismic analysis of a typical 10-story
building. The maximum base shear turned out to be several times larger for the
structure founded on deep soft sites than for the same structure on rock.

As another example of the large influence of the free-field motion on the
response of structures, the structiral damage caused in the Caracas earthquake
of 1967 is cited. Figure 9-38, which is based on Ref. [17], shows the structural-
damage intensity as a function of the fundamental frequencies of the soil deposits
of the various sites. The fundamental frequencies depend on the depths of the
sites. For structures with three to five stories, which will have a large funda-
mental frequency, damage was mariy times greater where soil depths ranged
from 30 to 50 m than for soil depths over 100 m. For buildings over 10 stories
high with small fundamental frequencies, the structural-damage intensity was
several times higher where soil depths exceeded 160 m than for soil depths below
140 m. It is apparent that the seismic free-field motion at the surface of the soil
deposit is amplified at the fundamental frequency of the site. If the fundamental
frequency of the structure-soil system (which will be only somewhat smaller than
that of the fixed-base structure for this type of building) is close to that of the
soil deposit, a resonance condition occurs, leading to larger structural damage.
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Figure 9-38 Structural damage versus influence of local soil conditions on

seismic ground motions (after Ref. [17]).
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- Figure 9-39 Comparison of vertical displacement of surrounding soil from
vertical shaking test, large-scale shaking table foundation (after Ref. [18]).

The results of vibration tests to determine the dynamic characteristics of
the foundation of a large-scale shaking table and of the surrounding soil
(Nuclear-Power Engineering Test Center, Tadotsu, Japan) will be discussed next
(Ref. [18]). The concrete mat foundation (Fig. 9-39) with a length = 91 m, a
width = 45 m, and a thickness = 13 m to 21 m has a weight = 1.5 GN. It is
embedded in a horizontally layered site of sand, gravel, and clay. The shear-
wave velocity increases from 160 m/s to 640 m/s at a depth of 180 m, where
weathered granite (1160 m/s) can be found. The results of the frequency-
sweeping tests are shown in Fig. 9-39, where the recorded vertical displacement
amplitude w of the free surface at a distance of 145 m from the center of the
foundation, where the vertical load P is applied, is plotted. The agreement with
the calculated values determined prior to the test is excellent. In the horizontal
direction, actual earthquake records are examined. In Fig. 9-40, the amplitude
ratio of the horizontal displacement ' of the foundation to that of the free field
u’ in the indicated points is plotted versus the frequency of the earthquake.
Assuming the free-field motion to arise from vertically incident S-waves, the
response of the foundation is calculated. The ratio |u'|/|u”| decreases for
increasing frequency until it reaches a constant value, which is caused by the
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Figure 9-40 Comparison of horizontal displacement ratio from actual earth-
quakes, large-scale shaking table foundation (after Ref. [18]).

effect of the embedment. The agreement between the recorded and calculated
values is fair.

Finally, the recorded field performance of an actual earthquake with strong
motion is compared to the results of a soil-structure interaction analysis. The
following comparison is based on Refs. [19] and [20], where a more complete
description can be found. The buried reactor structure within the refueling
building of Unit 3 of Humboldt Bay Power Plant in California consists of a
massive concrete caisson embedded at a depth of about 25 m below the ground
surface. The strongly layered site consists of clay and sand of various densities.
During the Ferndale earthquake of June 7, 1975, a strong motion instrument at
the surface recorded the free-field motion in the so-called transverse direction
with a peak acceleration of 0.35g. This earthquake record was assumed to act
at the surface of the site for the postearthquake calculation. Using the soil
properties determined from the seismic analysis for the design earthquake of
0.25g performed prior to the recorded earthquake, the free-field response was
determined. Subsequently, applying a procedure which is in essence the same as
that developed in this text, the actual interaction was calculated. The response
spectrum for 5% damping of the calculated horizontal motion is compared to
that determined from the recorded time history within the structure at the level
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of the ground surface and at the base of the caisson in Fig. 9-41. The agreement
throughout the frequency range is good. The response spectrum of the recorded
free-field motion is also specified in Fig. 9-41a. The large reduction of the motion
at the base of the structure should also be noted. This comparison shows that, at
least for this case, which exhibits quite a severe shaking, the analytical procedures
developed in this text can realistically predict the seismic response of a massive
structure embedded in a strongly layered site.

SUMMARY

1. The depth of the soil layer strongly affects the structural response. For a
shallow layer, the fundamental frequency of the structure-soil system is
smaller than that of the site. No radiation damping occurs. The equivalent
damping ratio will thus be a weighted average of the material-damping
ratios of the structure and of the soil. For a layer with an intermediate
depth, the fundamental frequency of the structure-soil system becomes,
for a sufficiently soft site, larger than that of the site, resulting in radiation
damping which contributes significantly (especially for squat structure) to
the equivalent damping ratio. The deeper the layer is, the less flexible the
soil has to be to activate the radiation damping.
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Adding a mass and a mass moment of inertia associated with the base to the
spring-mass—dashpot system modeling the structure does not modify the
characteristics of soil-structure interaction significantly.

Besides the stiff massive structures, for which all important interaction effects
must be evaluated, types of structures exist where only certain aspects need
to be examined. For instance, for continuous bridges with a large slender-
ness ratio, rocking dominates. The corresponding radiation damping can
be neglected. Besides depending on the stiffness ratio of the structure to
that of the soil and on the mass ratio, the response is thus affected by the
hysteretic-damping ratios of the structure and of the soil.

The contribution of the second mode to the total structural response (which
is significant for structures that have a small fixed-base frequency) is affected
nonuniformly taking soil-structure interaction into account.

Turning to the structural response caused by (out-of-plane) tangential free-
field motions, which are created by SH-waves, the following points are
important:

(a) For all angles of incidence, the response of the massless basemat for
the horizontally propagating waves is less than that for vertical inci-
dence. This applies to all points on the basemat, the reduction being
larger in the center point.

(b) For a structure with mass, the response for the horizontally propagating
waves can be larger or smaller than for vertical incidence. For points
located on the axis, horizontally propagating wave effects never
dominate.

(¢) In-structure response spectra for points not located on the axis exhibit
an additional substantial peak at the fundamental torsional frequency
of the structure-soil system.

The following statements apply to the structural response arising from the
radial (horizontal) and vertical (in-plane) free-field motions (P-, SV-, and
R-waves):

(a) Throughout the structure, the response caused by the radial motion of
the horizontally propagating wave is always reduced, compared to that
of vertically incident SV-waves.

(b) For points on the axis, this also applies to the vertical response caused
by the vertical motion of the horizontally propagating wave. The
corresponding rocking input (which is about twice as large as the tor-
sional rotation arising from an SH-wave) leads to a substantial horizontal
response, especially for points located at higher elevations and to an
additional vertical response for points not situated on the axis. The latter
even leads to a larger vertical response in points on the boundary of the
massless basemat.

(c) For the total horizontal response the phase angle between the horizontal
and vertical free-field motions is important. If the free-field motion is
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10.

retrograde (which is the case for R-waves in a half-space and for SV-
waves for angles of inicidence less than 45°), the horizontal response in
points at higher elevations caused by the radial motion and that caused
by the vertical are in phase and are thus added. For a prograde motion
(SV-waves for angles of incidence between 45° and the critical angle),
the opposite applies.

(d) For R-waves, whose motion is retrograde in an elastic half-space, whose
vertical component is approximately 1.5 times larger than the horizontal,
and whose velocity of propagation is even slightly less than the shear-
wave velocity, the horizontal-strictural response is magnified consider-
ably (e.g., by a factor of 2.5 at an elevation equal to the radius for all
parameters examined).

(e) Within the frequency range of iriterest to earthquake engineers, deviating
from the vertical incidence for the P-wave does not govern the vertical
response. However, the horizontal response for the SV-wave at the crit-
ical angle is significantly larger than that for vertical incidence, due to
the increase of the free-field motion by a factor of approximately 1.7.

(f) When combining P- and SV-waves to generate radial and vertical free-
field motions, making reasonable assumptions (vertical amplitude
= 0.67 horizontal amplitude, random phase angle, etc.) will lead to a
structural response similar to that obtained when vertical incidence is
postulated.

. The analytical procedures developed in this text are being applied to actual

structures. The through-soil coupling of a reactor building and of a reactor-
auxiliary and fuel-handling building is investigated. The seismic pile-soil—
pile interaction of a reactor building is addressed. The dynamic response of
a hyperbolic cooling tower and of a nuclear island with (nonlinear) aseismic
bearings to horizontally propagating seismic waves is examined.

. Soil-structure interaction generally represents an important effect which

must be considered. The free-field analysis is the most important aspect.
Neglecting the actual interaction analysis will lead to an overly conservative
design (although certain results, such as the relative displacements between
two structures, can be underestimated). Even seismic-design provisions
applicable to everyday building structures allow a significant reduction of
the equivalent static-lateral force (up to 309;) for soil-structure interaction
effects.

. The results are strongly influenced by the layering of the site, the embed-

ment of the structure, the flexibility of the base, the through-soil coupling
of neighboring structures, and the general seismic environment. The calcula-
tional procedure assumes a horizontal layering of the site (with an irregular
soil region adjacent to the structure) and a (quasi)-linear soil model.

The calculated free-field response compares favorably with recorded motions
of actual earthquakes. It is also demonstrated that the analytical procedures



450 Engineering Applications Chap. 9

predict realistically the recorded seismic response of a reactor caisson
embedded in a strongly layered site for quite severe shaking.

PROBLEMS

9.1. Comparing the dynamic-stiffness matrix of a surface foundation of a half-space
to that of a finite layer, the main effect is that below the fundamental frequency
of the built-in layer no radiation of energy (for the undamped case) exists. As an
approximation to the radiation damping coefficients of the layer, these can be set
equal to zero and to the values of the half-space for a frequency below and above
the corresponding fundamental frequencies of the layer, respectively. In addition,
the static-stiffness matrix increases for a finite layer. As a crude approxima-
tion, the dynamic-stiffness coefficients of a circular basemat of radius a resting
on the surface of an undamped layer of depth d can be formulated as

S, = 28Ga (1 + Zd)(k + ia,c,)

8Ga’® a ,
Sy =30 =) (1 + @>(k¢ + ia,c,)

where k, and k4 equal 1 and

_oa_za
/0 ao—c’<27
Cy =
N nta
0.575 a4,> 55
_oa_mac
/0 a"_c,<2dc,
cp =
N T ac
0.15 a°>2dc,

Note that ¢, and ¢y of the half-space correspond to the expressions introduced in
Eq. 3.65.

Introducing the dimensionless parameters used in Section 9.1.1 and the rela-
tion d/a, derive equations for the properties @/w, and C of the equivalent one-
degree-of-freedom system (Fig. 9-1). The material damping of the soil can be taken
into account by introducing the additional term (1 — @2/w?){, (analogous as in
Eq. 3.66b). Plot &/w, and f as a function of § (0.1 < § < 10) for dla =1, 2, and
for the half-space (h =0.67,m =3, m, =1, =0,v =0.33,{ =0.025, {, =
0.05). Compare with Fig. 9-2.

Results:
a‘;z 1
w? = ms? 2—v 30 — )
b+ [ﬁzkx(l + af2d) + k(1 + a/6d)]

@2 @ B PM2—V ¢
C‘c?f“(l a‘»f)“r(a_f) 16}5[ 72 KX + a/2d)

C,
+ 30— Vg 76
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d

The equivalent parameters are plotted in Fig. P9-1. They agree well with the
rigorous values shown in Fig. 9-2.
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Figure P9-1 Equivalent properties. (a) Natural frequency; (b) damping.

9.2. In Section 9.1.5 the interaction effects of a continuous girder bridge with hinged
columns (Fig. 3-19) are discussed. In the following, the characteristics for built-in
columns (Fig. P4-6) are examined. In Problem 4.6 the equations for the natural
frequency ¢ and the damping ratio { of an equivalent one-degree-of-freedom sys-
tem are derived.

(a) Express @ and { as a function of the dimensionless parameters § = w,k/c,,
k= hla, m = m/(pa®), v, {, and { ¢ using the frequency-independent ap-
proximations of Eq. 3.65 to evaluate the spring and damping coefficients. The
radiation-damping ratios {, and {, are defined in Eqs. 3.40 and 3.45.

(b) By plotting &/, and { versus § (0.1 < § < 10) for & = 3, 5, and 10 using the
parameters /n = 3, v = 0.33, { = 0.025, and {, = 0.05 show that, for the
statically indeterminate system (Fig. P4-6), a strong dependence on # exists, in
contrast to the statically determinate one (Fig. 3-18). Verify that f for suffi-
ciently large § will be larger than {,; that is, the term of the radiation damping
in the horizontal direction {, is significant. This is in contrast to the girder with
the hinged columns (Fig. 9-4, curve for m = 3).

Results:
2
@ @ _ 1

w3 2= 2—V 30 —v) :I
1+”"[ g TR —vem
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Figure P9-2 Properties of equivalent redundant one-degree-of-freedom system
(=3, v = 0.33, { = 0.025, {, = 0.05), varying slenderness ratio. (a) Natural
frequency; (b) damping.

For the SH-wave propagating horizontally along the free surface of a half-space
with ygg = 0°, calculate as a function of a, the response ratio of the displacement
amplitudes in the y-direction |+*|/|v?°°| in the points 1, 2, and 3 of the rigid base-
mat with mass (Fig. P9-3a). The following parameters which are the same as used
in connection with Fig. 9-11 apply: m = 3, v = 0.33, and {, = 0.05. Plot this
ratio and compare with that one of the massless basemat (m = 0). For the scat-
tered motion »¢, y2, use the results of the approximate analysis of Problem 4.3.
The dynamic-stiffness coefficients in the horizontal direction (subscript x) and for
twisting (subscript ¢) can be determined either by using the conical shear beam
(Problems 5.5 and 5.6) or as follows [corresponds to applying for the damped case
the same spring and damping coefficients as for the undamped case; see Problem
7.3, method (b)].

Zsfav [k,, —§ea.c. + ia‘,(c,t + %kx)]

with k£, = 1 and ¢, = 0.575.

S, =
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Figure P9-3 Basemat with mass excited by horizontally propagating SH-wave.
(a) Dynamic system; (b) harmonic response.

16Ga®
s, = 16627,

s — (ea,65 + iao(q, + 2a—i’k¢,ﬂ

with kg = 1 and ¢, = 0.15.
Compare the results with the exact ones shown in Fig. 9-11.

Solution:

The equations of motion (Eq. 3.20) of the rigid basemat with mass m and mass
moment of inertia 7 (= 0.5 a?m) equal

(—w?m + S, = S,v2
(—w + S)$ = Sirs
where (Problems 4.2 and 4.3)

v§ _sina,

vf a,
ays .3 (sina

}}" = —1—( 2 — ¢cOos a,,)
v 2a,\ a,

with setting ¢, = ¢, for ysg = 0°,

— @a
o =T,
For vertical incidence (¢, = ), v§ = v/, p¢ = 0, and
(—w2m + S W% = S

This leads to (Point 1)

v _sing .
=g " (for any )
(4

adt _ Sy(—w*m + SHr_. 3 (sina, _
" T S(—?T + s,,)[ '2aa( a, o “)J
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Point 2: —5 = —% — —i5s
,090 ,090

2°0

. o A ad
Point 3: w5 =% 1+ a5
290° — 90 + 290

The absolute values are plotted in Fig. P9-3b, using S, and S, as specified in the
statement of the problem. The agreement with the exact values shown in Fig. 9-11
is very good.

9.4. Determine the harmonic response of the massless structure with # — 1 in points
1 and 2 (Fig. P9-4a) for the following horizontally propagating surface waves:
(a) Rayleigh wave of halfspace (| w/| = 1.565| 4/ | with ¢, = 0.933¢, for v = 0.33)
(b) Retrograde wave with | w/| = |4/ | propagating with the same ¢,
(c) Prograde wave with |wf| = |u/| propagating with the same c,.
For the scattered motion of the basemat, use the approximate results of Problems
4.2 and 4.4. Plot the horizontal response ratio | u!|/|uf| = | u*|/|u’ | versus a,. Com-
pare part (a) with the results shown in Fig. 9-21.

) b)

——— RAYLEIGH - WAVE
- —— RETROGRADE
-------- PROGRADE

1.5 4
1.0+

G) z
by 05

do

Figure P9-4 Massless structure excited by horizontally propagating surface
waves. (a) Dynamic system; (b) harmonic response.

Solution:
Rayleigh wave wf = —1.565iu’
Retrograde wave wl = —juf
Prograde wave wf = Jiuf
Problem 4.2:

uf _ <, sin wa _ 0.933 with a, = wa

Zo —8 = -~ sin a_"
u’ wa Cq a, 0.933 cy
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Problem 4.4:
q_& wa wa
= Cl)_a (aa sin — — cos C_,)

gi 0933/0933 . a,
=83\, %933 °°50933)

. LW ug
Point 1: gt
Point 2: ¥ — 4 P8 "ﬂ £

Note that for a retrograde motion the two terms on the right-hand side are posi-
tive (for small and intermediate a,). The absolute values are plotted in Fig. P9-4b.
The agreement of the approximate results for the R-wave with the corresponding
exact values shown in Fig. 9-21 is very good.
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Amplification:
in-plane motion
inclined wave, 221
Rayleigh-wave, 238
vertically incident wave, 220
layered site
body wave, 183
definition, 186
out-of-plane motion
inclined wave, 207
Love-wave, 214
vertically incident wave, 205
prismatic rod, 132
soft site, 253
soft soil in contrast to rock, 5
Angle of incidence:
body-wave in half-space, 183
critical, 191
definition, 73
half-space
incident P-wave, 190
incident SH-wave, 189
incident SV-wave, 191
in-plane motion, 147
layer on half-space
incident P-wave, 203
incident SH-wave, 195
incident SV-wave, 202

Love-wave, 198
Rayleigh-wave, 204
out of-plane motion, 140
physical interpretation, 200

Apparent velocity (see also phase velocity):
affecting scattered motion (see scattered

motion)
beam on elastic foundation, 171
classification of nature of motion
in-plane motion, 268
out-of-plane motion, 267

effect of horizontally propagating wave, 412

hyperbolic cooling tower, 434

nuclear island with aseismic bearings, 437

parametric study
Love-wave, 210
Rayleigh-wave, 233
Rayleigh-wave in half-space, 193
rock site
assumed wave pattern, 263
Love-wave, 260
Rayleigh-wave, 262
rod, 118, 124
site, 187
soft site
Love-wave, 249
Rayleigh-wave, 251

string on viscoelastic foundation, 168
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Applied load:
frequency content, 70
spatial variation, 70
Applied Technology Council, 441
Artificial boundary (see also fictitious
boundary), 274, 281
Artificial time history:
definition, 38
effect of horizontally propagating wave, 413
equivalent one-degree-of-freedom system on
half-space, 49
layer, 408
hyperbolic cooling tower, 434
nuclear island with aseismic bearings, 436
rock site, 259
soft site, 243
through-soil coupling analysis, 426
Aseismic bearings, 436
Attenuation:
affecting scattered motion (see scattered
motion)
in-plane motion, 234
out-of-plane motion, 212
rock site, 259
rod, 124
site, 188
soft site, 249
string on viscoelastic foundation, 168
Axisymmetric structure:
hyperbolic cooling tower, 88
kinematic motion, 76
reactor shield building
impact load, 86
seismic load, 90

Base:
flexible, 18
kinematic interaction, 74
modeling aspects, 71, 442
reactor building, 91, 427
rigid, 23
Basemat (see base)
Basic equation of motion (see equation of
motion of discretized system)
Beam theory, 79, 90
Bessel equation, 161, 366
Bessel function, 105, 174, 287, 325, 393
Bessel transform, 287
Boeing 707, 34
Boundary:
artificial (see artificial boundary)
fictitious (see fictitious boundary)
Boundary-element method:

calculation of dynamic-stiffness coefficients of

soil domain, 318-22

dynamic-stiffness coefficient for out-of-plane

motion of layer, 365
example, 313
general, 279
significance, 312
Boundary integral-equation method, 279, 281,
312

Boundary-value problem, classical, 182
Bridge:

built-in columns, 108, 451

hinged columns, 39, 409

Index

Caisson, 8
Caracas earthquake (1967), 444
Characteristic equation, 314
Classical boundary-value problem, 182
#Classical modes, 14, 38, 388
Cloning algorithm, 349
Compatibility constraint, 23, 92, 383
Complex-response method, 10, 17
Component-mode synthesis (see substructure-
mode synthesis)
Conical shear beam:
approximate damping, 347
translation, 172
twisting, 174
Consistent boundary, 279
Constitutive model, 7
Control motion (see also design motion):
body wave, 184
general, 3, 5, 179-81
nuclear island with aseismic bearings, 437
prismatic rod, 115, 131
rock site, 259, 260
soft site, 242, 250, 253
surface wave, 185
Control point:
body wave, 183
general, 3, 4, 7, 179-81
nuclear island with aseismic bearings, 437
prismatic rod, 115
rock site, 263
soft site, 241, 250, 253
surface wave, 185
Convergence of dynamic-stiffness coefficient,
120

Convolution integral (see also convolution
operator), 391, 394, 436
Convolution operator (see also convolution
integral), 10, 373
Correspondence principle, 15, 124, 127, 139,
394, 395
Critical angle of incidence, 191, 225, 268
Cutoff frequency:
beam on elastic foundation, 172
depth of layer, 407
embedded foundation, 334
out-of-plane motion, 345
pile foundation, 325
rod, 118, 122, 123, 126, 128, 349, 353
shear beam on elastic foundation, 169
string on elastic foundation, 167
string on viscoelastic foundation, 168
strip foundation, 295

Damper coefficient (see damping coefficient)
Damping:
approximate procedure, 346
coefficient (see also dynamic-stiffness
coefficient)
disk, 302-7
embedded foundation, 332-35
out-of-plane motion, 277
reactor building, 338-39
rod, 121, 122, 127
strip, 295-301
two-dimensional versus three-dimensional
modeling, 308
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effective
in-plane motion, 234
out-of-plane motion, 234
rod, 126
equivalent modal ratio, 389, 390
equivalent ratio
basic case for vertical excitation, 60, 61
basic case on half-space for horizontal
excitation, 44, 62
basic case on layer for horizontal
excitation, 406, 450
bridge with built-in columns, 110, 452
bridge with hinged columns, 410, 411
hyperbolic cooling tower, 113
rigid structure, 66
hysteretic, 15, 390
influence on interpretation of variables, 201
material, 6, 41, 123, 139, 199, 275
matrix, 13, 371, 387
parametric study, 204, 212, 219, 234
radiation
half-space, 143, 151
introductory example, 41
rod, 121
viscous, 41, 389, 394, 395
Dashpot coefficient (see damping coefficient)
Decay factor (see also attenuation):
distance, 188
wave length, 187
Decoupling, 71, 102
Design motion (see also control motion), 3, 37
Design response spectrum, 35, 428
Dilatational wave (see also P-wave), 137
Dilatational-wave velocity, 135
Dimensionless frequency:
beam on elastic foundation, 170
circular cavity, 366
definition, 293
disk, 301
embedded foundation, 327
layer, 344
pile, 325
rod, 117
shear beam on elastic foundation, 169
string on elastic foundation, 166
strip, 294
Dimensionless parameters:
basic case for vertical excitation, 60
basic case on half-space for horizontal
excitation, 45
basic case on layer for horizontal excitation,

bridge with built-in columns, 451
effect of horizontally propagating wave, 414
hyperbolic cooling tower, 112
in-plane motion, 219
out-of-plane motion, 204
Dimensionless time:
definition, 392
rod, 393
Dirac function, 315, 392
Direction of propagation:
interpretation, 138, 200
P-wave, 137
S-wave, 137
Direct method, 9, 10, 369, 374, 401
Discrete Fourier Transform, 160
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Dispersion:
beam on elastic foundation, 170
carthquake, 34
hyperbolic cooling tower, 434
in-plane motion, 233
layer, 191, 272
out-of-plane motion, 210, 213
rock site
Love-wave, 260
Rayleigh-wave, 262
rod, 118, 125
site with surface wave, 186
soft site
Love-wave, 249
Rayleigh-wave, 252
string on elastic foundation, 167
Distortional wave (see also SH-wave and SV-
wave), 138
Driving force, 26
Dynamic-equilibrium equation (see equilibrium
equation)
Dynamic-flexibility coefficient (see flexibility
coefficient)
Dynamic-stiffness coefficient, approximate

values:
damping, 346, 452, 453
disk on half-space, 46, 61, 355
disk on layer, 450
strip, 66
Dynamic-stiffness coefficient, semi-infinite
systems:
annular ring, 362
beam on elastic foundation, 172
circular cavity, 367
disk
half-space, 302, 303
layer built-in at its base, 304, 305
layer on half-space, 305, 306
embedded foundation, 321
excavated, 330
free field, 332, 335, 336
ground, 332-35
layer in out-of-plane motion, 345, 365
pile foundation, 326
reactor building, 338, 339
rod, 121, 126, 394
shear beam
translational, 174
twisting, 177
shear beam on elastic foundation, 169
string on elastic foundation, 167
string on viscoelastic foundation, 168

strip
half-plane, 295, 296
layer built-in at its base, 295, 296
layer on half-plane, 298, 299
surface foundation, 285
Dynamic-stiffness matrix:
excavated, 21, 273, 329
free field, 21, 274, 334, 392
ground, 21, 273, 333, 372, 387, 391
half-space
in-plane motion, 151-53
out-of-plane motion, 14244
layer
in-plane motion, 150-53
out-of-plane motion, 142-44
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Dynamic-stiffness matrix (cont.)
wave length large compared to depth, 178
site, 132, 183
structure, 15, 19, 24, 78, 371

Eigenvalue:
definition, 14
Love-wave, 272
substructure-mode synthesis, 99
surface wave, 186
transformation to modal amplitudes of fixed

base structure, 381
transformation to modal amplitudes of total
system, 388

Eigenvector:
definition, 14
structure, 381
substructure-mode synthesis, 99
transformation to modal amplitudes of fixed

base, 381

Elementary boundary, 275

Embedment:
basic equation of motion, 22
dynamic-stiffness matrix, 281, 327
general, 2, 8, 442

Energy sink, 2

Energy transmission (see rate of energy

transmission)

Equation of motion of continuous system:
beam on elastic foundation, 170
Cartesian coordinates, 177
circular cavity, 366
cylindrical coordinates, 158
pile, 57
rod, 117
shear beam

translation, 172

twisting, 176
shear beam on elastic foundation, 169
spherical coordinates, 279

Equation of motion of discretized system:

approximate formulation in time domain,
387-90
inertial interaction
fiexible base, 29
rigid base, 31
kinematic interaction
flexible base, 28
rigid base, 30
nonlinear structure with linear soil, 391
quasi-static transmission of base response
motion
flexible base, 380
rigid base, 386
quasi-static transmission of free-field motion,
377, 379
quasi-static transmission of scattered motion
flexible base, 400
rigid base, 385
relative to free field, 375
relative to scattered motion
flexible base, 376
rigid base, 380

Index

total displacements
flexible base, 21, 374
rigid base, 24, 25, 383, 384
structure built-in at its base, 28
total system, 371
transformation to modal amplitudes of fixed-
base structure
flexible base, 381
rigid base, 386
Equilibrium equations:
Cartesian coordinates, 133
cylindrical coordinates, 157
rod, 116
spherical coordinates, 279
Equivalent damping ratio (see damping,
equivalent ratio)
Equivalent modal damping ratio, 389, 390
Equivalent one-degree-of-freedom system
basic case for vertical excitation, 61
basic case on half-space for horizontal
excitation, 43, 50
basic case on layer for horizontal excitation,

bridge with built-in columns, 108, 451
bridge with hinged columns, 409
hyperbolic cooling tower, 110
multistory building, 109
rigid structure, 64

Equivalent seismic input, 44

Excavation:
basic equation of motion, 21
dynamic-stiffness matrix, 273, 321, 329
general, 3, 5

Far field, 391
Ferndale earthquake (1975), 446
Fictitious boundary (see also artificial
boundary), 1, 9, 369
Field experience, 443
Finite element method, 13, 86, 91, 274, 330
Flexibility coefficient:
embedded foundation, 317
frame, 94
half-space, 291, 292, 359
in-plane motion, 287, 289, 290
out-of-plane motion, 286, 290
surface foundation, 284
time domain, 391, 393, 395
Flexibility of basemat, 18, 427, 442
Fourier amplitude (see also Fourier coefficient),
33

Fourier coefficient (see Fourier series)

Fourier integral, 16, 285

Fourier series, 16, 78, 86, 287, 314, 325, 363,

364, 434

Fourier transform:
frequency domain, 16, 182, 392
wave-number domain, 182

Free field:
basic equation of motion, 21
dynamic-stiffness matrix, 273, 321
general, 3, 4, 5

Free field motion, 5, 9, 72, 131, 179, 444
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Frequency:
equivalent
basic case for vertical excitation, 61
basic case on half-space for horizontal
excitation, 43
basic case on layer for horizontal
excitation, 406, 450
bridge with built-in columns, 110, 451
bridge with hinged columns, 410
hyperbolic cooling tower, 113
rigid structure, 65
excitation, 14
natural (fundamental)
decoupling of subsystem, 72, 102
excavated part, 331
fixed base, 381, 390
general, 14
hyperbolic cooling tower, 88
mulistory building, 107
rock site, 259
soft site, 242
total system, 381
Frequency, cutoff (see cutoff frequency)
Frequency domain:
advantages of working in, 10, 17, 18
method of complex response, 371
Frequency equation:
Love-wave, 198
Rayleigh-wave, 203
Friction plate, 436

Generalized displacement, 83, 94, 96, 100
Generalized spring, 10, 22, 26, 122
Global result, 70
Green’s function:
embedded foundation, 320, 322, 328
surface foundation
axisymmetric, 289, 290
two-dimensional, 286, 287
Ground:
basic equation of motion, 21
dynamic-stiffness matrix, 273, 321
general, 20
motion (see scattered motion)

Half-space:
disk, 301-11
dynamic-stiffness matrix, 142, 151
free-field motion, 195-203
layered, 8
Hankel function, 366, 368
Hooke’s law, 133, 279
Humboldt Bay Power Plant, 446
Hyperbolic cooling tower, 88, 110, 433
Hysteretic damping (see damping, hysteretic)

Impact:
load, 33
model, 84, 86
Impedance ratio, 196
Incidence, angle (see angle of incidence)

Inclined body wave:
effect of horizontally propagating wave
P- and SV-waves, 419
SH-wave, 415, 452
general, 73
half-space, 189, 191
in-plane motion, 221, 224
out-of-plane motion, 207
soft site
P- and SV-waves, 245
SH-waves, 245
Incoming wave, 118, 279
Inertial interaction:
axisymmetric structure, 78
flexible base, 29
general, 5
rigid base, 31
Infinite element, 278
Infinite substructuring, 353
Integration, numerical (see numerical
integration)
Interaction, actual, 4, 7, 22, 38, 441
Interpolation in frequency domain, 17
Irregular soil, 26, 391
Isolation mechanism, 436

Kinematic interaction:
axisymmetric structure, 76
flexible base, 28, 76, 95
general, 5
rigid base, 30

embedded structure, 76
surface structure, 74, 103-7
simple structure, 414
Kinematic transformation, 24

Lamé constants, 135
Laplace operator, 135, 159
Layer:
dynamic-stiffness matrix, 142, 150
modeling aspect, 442
radiation, 407
Linearity, 7, 10, 390, 443
Local boundary, 275, 345
Local results, 70
Longitudinal-wave velocity, 117
Love-wave:
layer on half-space, 198, 272
parametric study, 210
rock site, 259
soft site, 249

Machine vibration, 33, 56, 441
Mass lumping, 96
Mass matrix:
based on generalized displacements, 94
effective, 403
general, 13, 370
generalized, 386, 401
structure, 19
Mass of base, 408
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Mass ratio, 45, 61, 405, 414
Material damping (see damping, material)
Maxwell-Betti’s reciprocity law, 284, 317
Modal amplitude (see mode shape)
Modal coordinate (see mode shape)
Modal load vector, 14, 381, 389
Mode conversion, 189
Mode shape:

decoupling, 102

fixed base, 381, 390

general, 14

hyperbolic cooling tower, 89

multistory building, 107

reactor building, 81

substructure-mode synthesis, 99

total system, 388
Multistory structure, 39, 107

Natural frequency (see frequency, natural)

Near field, 391

Neoprene pads, 436

Nonlinearity, 7, 9, 10, 373, 390, 443

Nuclear island, 436

Nuclear-Power Engineering Test Center,
Tadotsu, 445

Nuclear power plant, 3, 7, 21, 79, 84, 259,
390, 426, 428, 436, 442

Nuclear Regulatory Commission, U.S. (see U.S.
Nuclear Regulatory Commission)

Numerical integration, 293

Off-shore structure, 442

One-degree-of-freedom system, equivalent (see
equivalent one-degree-of-freedom system)

Orthogonality condition, 14, 99, 381, 388

Outcrop, 5, 180

Outgoing wave, 22, 118, 275, 276, 280

Parametric study:
basic case on half-space, 407
basic case on layer, 46, 408
disk, 301
effect of horizontally propagating wave, 414
embedded foundation, 333
in-plane motion, 219
out-of-plane motion, 204
strip, 293
Particular solution:
in-plane motion, 154
in-plane motion, inclined, 324
out-of-plane motion, 145
out-of-plane motion, inclined, 324
Phase velocity:
half-space, 193
layer, 141, 147, 162
layered site, 183, 186
layer on half-space, 195, 203
physical interpretation, 200
rod, 118, 125
string on elastic foundation, 166
string on viscoelastic foundation, 167
Pile, 8, 26, 57, 325, 428

Index

Pipe, 8

Pole, 134

Potential, 158, 280

Prograde, 192, 222, 263, 424, 434, 454

Propagation, direction (see direction of
propagation)

P-wave, 72, 137, 147, 189, 203, 220, 221, 245,
345, 419

P-wave velocity (see dilatational-wave velocity)

Quasi-static transmission:
base response motion, 379, 386
definition, 28, 31
free-field input motion, 377
scattered motion, 384
substructure-mode synthesis, 99

Radiation:
condition, 121, 142, 279, 281
damping, 123, 143, 151, 197, 211, 233, 373,
408, 450
depth of site, 6, 336, 408, 442
general, 2, 6, 14
Rate of energy transmission:
in-plane motion, 156, 233
out-of-plane motion, 146, 211
rod, 123, 127
Rayleigh-wave:
effect of horizontally propagating wave, 423,
5

half-space, 192
nuclear island with aseismic bearings, 437
parametric study, 232
rock site, 261, 263
soft site, 251
Rayleigh-wave velocity, 193, 233, 454
Reactor-auxiliary building, 84, 90, 426
Reactor building, 79, 86, 90, 426
Reciprocity law (see Maxwell-Betti’s reciprocity
law)
Regulatory Guide 1.60, 36
Relaxed contact, 293, 302
Response spectrum, 34, 72, 81, 85, 87, 244,
264, 443, 447
Retrograde, 192, 193, 230, 236, 423, 434
Rigid body, 23, 29, 31, 91, 284, 319
Rigid structure, 64, 66, 110
Ritz, 96
Rock site, 259
Rod:

approximate value of dynamic-stiffness
coefficient for damping, 349
cloning, 350
dynamic-stiffness and flexibility coefficients in
time domain, 393, 394
general, 115
infinite substructing, 355
Rotating machinery (see machine vibration)
Rotation strain, 133, 158

San Fernando earthquake (1971), 35
San Francisco earthquake (1957), 444
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Scattered motion:
apparent velocity, 188
approximate, 103, 105, 106
definition, 21
equation, 23, 25, 31, 384, 387, 391
in-plane motion, 241
out-of-plane motion, 218
quasi-static transmission, 374, 384
rigid base, 74, 76
rock site, 265
soft site, 257
translational and rotational components for
circular basemat, 310, 311
Second mode, 89, 411
Seismic environment, 10, 443
Seismic hazard, 3, 37
Semi-infinite (see also unbounded), 1, 166, 168,
170, 373
Shape function, 83, 94, 284
Shear beam:
conical (see conical shear beam)
elastic foundation, 168
Shear panel, 93
Shear-wave velocity, 135
SH-wave, 72, 138, 140, 189, 195, 205, 207,
244, 276, 415
Single-story building frame, 39
Site, 2, 3, 115, 131, 179, 242, 259
Slenderness ratio, 45, 405, 414
Soft site, 242
Soil dynamics, 1
Soil-structure interaction:
effect, 4, 44, 441
equation
frequency domain, 21, 22, 25, 374, 376,
380, 381, 383, 384, 385, 386
time domain, 387, 388, 389, 390, 391
example, 38, 59, 405, 412
field performance, 443
modeling aspects, 442
objective, 1
Sommerfeld’s radiation condition, 279, 368
Source:
fictitious loads, 316, 318, 319, 321, 329
mechanism, 2, 3, 22, 34, 179
Spatial discretization, 13
Spatial variation, 70, 72
Special case, 143, 151
Spectral displacement, 35
Spectral pseudo-acceleration, 35
Spectral pseudo-velocity, 35
Spring:
coefficient (see also dynamic-stiffness
coefficient)
disk, 302-7
embedded foundation, 332-35
reactor building, 338-39
rod, 121, 122, 127
strip, 295-301
generalized (see generalized spring)
Static condensation, 94, 96, 99
Static-stiffness matrix:
annular ring, 363
based on generalized displacements, 94
beam on elastic foundation, 172
contribution of strain energy, 82
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cylindrical cavity, 368
disk on half-space, 46, 111, 302, 359
disk on layer, 450
general, 13, 273, 370
quasi-static transmission, 28, 377
rod, 121, 393
shear beam
translation, 174
twisting, 175
soil, 293
structure, 19
Stiffness coefficients, dynamic:
approximate (see dynamic-stiffness
coefficient, approximate)
semi-infinite systems (see dynamic-stiffness
coefficient, semi-infinite systems)
Stiffness matrix, dynamic (see dynamic-stiffness
matrix)
Stiffness matrix, static (see static-stiffness
matrix)
Stiffness ratio, 45, 60, 405, 414
Strain-displacement equations:
Cartesian coordinates, 133
cylindrical coordinates, 157
spherical coordinats, 279
String, 166, 167
Structural damage intensity, 444
Structural dynamics, 1
Structure, axisymmetric (see axisymmetric
structure)
Structure-soil interaction (see soil-structure
interaction)
Structure-soil interface (see also base), 8, 9, 22,
273, 281, 282, 292, 312, 369
Substructure: )
advantages, 10
definition, 9, 18, 184, 373
replacement, 22, 54, 56, 57
Substructure-mode synthesis, 98, 426
Superposition, 7
Surface wave (see also Love-wave and
Rayleigh-wave), 185
SV-wave, 72, 138, 147, 191, 202, 220, 224,
245, 419

s

Three-dimensional model, 307, 443
Through-soil coupling, 8, 336, 357, 426, 443
Transfer matrix:
layer
in-plane motion, 149
out-of-plane motion, 142
rod, 119
Transformation:
modal amplitudes of fixed-base structure, 380,
386, 389
modal amplitudes of total system, 388
reduction degrees of freedom, 95
stiffness matrix, 392
Transmission path, 3, 179
Travel path, 2, 34
Tripartite plot, 35
Tuned-mass absorber, 56
Tunnel, 8
Two-dimensional model, 66, 307
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Unbalanced mass, 33

Unbounded (see also semi-infinite), 1, 7, 10,
20, 120, 166, 170, 172, 274, 279

Uniqueness, 121, 280

U.S. Nuclear Regulatory Commission, 36, 68,
242

Velocity, apparent (see apparent velocity)

Vertically incident wave, 72, 143, 151, 205,
220

Viscous boundary (see local boundary)

Viscous damping (see damping, viscous)

Volumetric strain, 133, 158

Wave equation:
Cartesian coordinates, 135

Index

cylindrical coordinates, 159
rod, 114
spherical coordinates, 280

Wave number:
layer, 141, 147
layered site, 183
physical interpretation, 200
transformation, 162, 182, 285, 287

Wave pattern, 3, 179, 263

Wave velocity:
dilatational (see dilatational-wave velocity)
longitudinal (see longitudinal-wave velocity)
Rayleigh (see Rayleigh-wave velocity)
shear (see shear-wave velocity)

Weighted residual, 312, 316

Weighting function, 284, 317

Welded contact, 293, 302
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